
1© 2019 The MathWorks, Inc.

Durvesh Kulkarni

Senior Application Engineer

MathWorks India

Comprehensive workflow for

AUTOSAR Classic & Adaptive

using Model-based Design

2

Agenda

▪ Introduction to AUTOSAR

▪ Simulink for Classic Platform

– Automatic modeling and code generation

– Simulation of AUTOSAR ECU software

– Blocks for AUTOSAR Library routines

– Importing and exporting AUTOSAR descriptions artifacts (ARXML files)

▪ Simulink for Adaptive Platform

– A closer look at the Adaptive layers

– Motivation for Simulink to support Adaptive

– Mapping Adaptive platform to Simulink

– Code Generation for Adaptive components

▪ Polyspace for AUTOSAR

▪ Additional Resources

3

Agenda

▪ Introduction to AUTOSAR

▪ Simulink for Classic Platform

– Automatic modeling and code generation

– Simulation of AUTOSAR ECU software

– Blocks for AUTOSAR Library routines

– Importing and exporting AUTOSAR descriptions artifacts (ARXML files)

▪ Simulink for Adaptive Platform

– A closer look at the Adaptive layers

– Motivation for Simulink to support Adaptive

– Mapping Adaptive platform to Simulink

– Code Generation for Adaptive components

▪ Polyspace for AUTOSAR

▪ Additional Resources

4

Introduction to AUTOSAR

▪ AUTOSAR – AUTomotive Open Systems Architecture

– Middleware standard, jointly developed by automobile manufacturers, electronics and

software suppliers and tool vendors.

– Motto: “cooperate on standards, compete on implementations”

Attendees

Associate Partners

Development
Partners

Premium
Partners

Core Partners

5

N

N N

N

N NN

A

A

C

C

C

N Non - AUTOSAR

C Classic - AUTOSAR

A Adaptive - AUTOSAR

AUTOSAR Platforms

Adaptive Application Software

High Performance

Hardware/Virtual Machine

Adaptive AUTOSAR

Services

Basis

ARA

Software

Hardware

Non- AUTOSAR

Application Software

Hardware

RTE

Classic AUTOSAR

Basic Software

6

A new platform for compute intensive applications

High,
in the range of micro-sec

Low,

~ 1000 MIPs

Low,
in the range of sec

High,

~ 10,000 MIPs

Mid,
in the range of milli-sec

High,

> 20,000 MIPs

Real time

Requirements

Computing

power

Source: AUTOSAR Adaptive Platform Joint Meeting May 2017MIPs: Million Instructions per Second

Audio

Linux operating system, drivers and libraries

Infotainment Platform

System Architecture

Graphics Multimedia SpeechAudio

x86 or ARM-based processor

CE- device

Package

Management

External

Access

Networking

Connectivity

Security

Positioning

Personal

Information

Management

GENIVI members build and integrate compliant products, and

their differentiating features, tools, services

7

AUTOSAR BlocksetAUTOSAR Support Transition

▪ R2018b and earlier ▪ R2019a and later

Simulink*

AUTOSAR Support

Package

Embedded Coder**

Simulink*

Embedded Coder**

Required

AUTOSAR

Blockset

Required for sim Required for code

Embedded Coder**

*Requires MATLAB

**Requires MATLAB Coder and Simulink Coder

8

Agenda

▪ Introduction to AUTOSAR

▪ Simulink for Classic Platform

– Automatic modeling and code generation

– Simulation of AUTOSAR ECU software

– Blocks for AUTOSAR Library routines

– Importing and exporting AUTOSAR descriptions artifacts (ARXML files)

▪ Simulink for Adaptive Platform

– A closer look at the Adaptive layers

– Motivation for Simulink to support Adaptive

– Mapping Adaptive platform to Simulink

– Code Generation for Adaptive components

▪ Additional Resources

9

AUTOSAR Support from Embedded Coder and Simulink

ECU Hardware

Run Time Environment (RTE)

Services Layer
Complex Device

Drivers

Microcontroller Abstraction Layer

ECU Abstraction Layer

Basic Software

AUTOSAR Software

Component 2

AUTOSAR Software

Component n
AUTOSAR Software

Component 1
……….

Application Layer

Basic Software

Software Architecture Definition

Behavior
Modeling
& Code

Generation

Modeling and
Simulation

Authoring Tools

BSW Configuration
& RTE Generation

Basic SW Providers

10

Automatic modeling and code generation

▪ Show quick start demo, edit in code perspective UI and AUTOSAR dict,

code gen

11

Functional simulation of AUTOSAR basic software is critical

for AUTOSAR ECU development

Basic Software

Application Software

RTE

AUTOSAR ECU

layered architecture Many calls between application software and basic

software

Basic software functionality is highly dynamic

Simulation of basic software reduces development

time and improves software quality

12

Basic software library makes functional simulation of

AUTOSAR basic software as easy as pressing the play

button

Detailed Specifications
Basic Software Library

Encapsulated in

13

Simulation of AUTOSAR ECU software

▪ Seat Belt Reminder demo

14

AUTOSAR Library Routines

15
A

U
T

O
S

A
R

S
W

-C

SW-C
Description

A
U

T
O

S
A

R
S

W
-C

SW-C
Description

Export ARXML

Export ARXMLImport/Update

Embedded

Coder

Importing and exporting AUTOSAR descriptions (ARXML files)

SIL/PIL TestImport/Update

Simulink and AUTOSAR Blockset

Round Tripping

Embedded

Coder

16

Import AUTOSAR XML to Simulink

Import AUTOSAR Component to Simulink

ThrottlePositionControlComposition.arxml

17

AUTOSAR Software Components

Application Software

RTE

Basic Software

NvBlockSW

Component Type

ECUAbstractionSW

Component Type

ComplexDeviceDrive

rSW Component

Type

ServicesSW

Component Type

ApplicationSW

Component Type

SensorActuatorSW

Component Type

ParameterSW

Component Type

ServiceProxySW

Component Type

18

Composition Component

Composition Component

SensorActuatorSw

ComponentType

ApplicationSw

ComponentType

ComplexDevice

DriverSwComponent

Type

ApplicationSw

ComponentType

AUTOSAR Composition-Software-Component

Composition component ➔ Hierarchical aggregation of software components

▪ Compositions purely

architectural element

– Do not impact how

components interact with

RTE, and code

19

20

Agenda

▪ Introduction to AUTOSAR

▪ Simulink for Classic Platform

– Automatic modeling and code generation

– Simulation of AUTOSAR ECU software

– Blocks for AUTOSAR Library routines

– Importing and exporting AUTOSAR descriptions artifacts (ARXML files)

▪ Simulink for Adaptive Platform

– A closer look at the Adaptive layers

– Motivation for Simulink to support Adaptive

– Mapping Adaptive platform to Simulink

– Code Generation for Adaptive components

▪ Polyspace for AUTOSAR

▪ Additional Resources

21

Adaptive AUTOSAR Foundation

High Performance Hardware/Virtual Machine

Adaptive AUTOSAR Services

OS

Execution S/W CM DiagnosticsCommunication

API API API Service Service

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

AUTOSAR Run-time for Adaptive (ARA)

AUTOSAR Layered software architecture

Components

Run-time

Basic

Services

Hardware

22

Execution Communication

API API

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

AUTOSAR Run-time for Adaptive (ARA)

Key Concept #1

Everything is a process .. as in “OS process”

OS
(POSIX

Compliant)

API

Provides

multi-process

capability

OS Process #1 OS Process #2 OS Process #3 OS Process #4

Notes: Each OS Process

- Corresponds to main() in C/C++ code

- Has own memory space & namespace

- Can be single or multi-threaded

23

Execution Communication

API API

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

AUTOSAR Run-time for Adaptive (ARA)

Key Concept #1

Everything is a process .. as in “OS process”

OS
(POSIX

Compliant)

API

Provides

multi-process

capability

OS Process #1 OS Process #2 OS Process #3 OS Process #4

Process life-cycle

management.Process scheduling

Inter-Process

Communication

24

Linux Machine 1 Linux Machine 2

Process

Key Concept #2

Service-oriented inter-process communication

Process Process Process Process Process

IPC IPC IPC IPC

NetworkIPC

25

Key Concept #2

Service-oriented communication

▪ Service Interface can contain

– Methods (Functions)

– Events (Messages)

– Fields (Data)

<<interface example>>

RadarService

• result = Calibrate(config)

• [success, out_pos] = Adjust(in_pos)

• BrakeEvent

• UpdateRate

26

Key Concept #3: Everything is C++

High Performance Hardware/Virtual Machine

ara::exec

Execution Mgnt.

ara::rest

RESTful

ara::per

Persistency

ara::crypto

Cryptography

ara::phm

Platform Health Mgnt.

ara::tsync

Time Synchronization

ara::log

Logging & Tracing

ara::sm service

State

Management

ara::diag service

Diagnostics

User Applications

Adaptive Application Adaptive Application Adaptive Application ASW::XYZ

Non-PF Service
ASW::ABC

Non-PF Service

ara::s2s service

Signal to Service Mapping

ara::nm service

Network

Management

ara::ucm service

Update and Configuration Management

POSIX PSE51 / C++ STL

Operating System

ara::core

Core Types
ara::iam

Identity Access Mgnt.

Adaptive Application

* ara::com

Communication Mgnt.

S
O

M
E

/I
P

IP
C

(l
o
c
a
l)

D
D

S

AUTOSAR Run-time for Adaptive (ARA)

27

Motivation for Simulink to support Adaptive

▪ Simulink is heavily used for AUTOSAR Classic

▪ Customers have requested Simulink support for Adaptive platform

▪ Simulink supports service oriented modelling

▪ Embedded Coder generates C and C++ code

▪ MathWorks participates in the AUTOSAR standard development, including

both Classic and Adaptive platforms

28

Adaptive SW Architecture Concepts

Adaptive

Application

Service Interface

ProvidedPortRequiredPort

"Radar" : {

// events

"event" : {

“brakeEvent"

"parkingBrakeEvent"

},

// methods

"method" : {

"Calibrate"

"Adjust"

},

// fields

"field" : {

“updateRate"

}

}

29

"Radar" : {

// events

"event" : {

“brakeEvent"

"parkingBrakeEvent"

},

// methods

"method" : {

"Calibrate"

"Adjust"

},

// fields

"field" : {

“updateRate"

}

}

Mapping AUTOSAR AP Concepts to

Simulink

Adaptive

Application

RequiredPort

30

"Radar" : {

// events

"event" : {

“brakeEvent"

"parkingBrakeEvent"

},

// methods

"method" : {

"Calibrate"

"Adjust"

},

// fields

"field" : {

“updateRate"

}

}

Mapping AUTOSAR AP Concepts to Simulink

Adaptive

Application

ProvidedPort

31

Out-of-box AUTOSAR support

1. Configure Model

✓ Target

✓ AUTOSAR Dictionary

2. Generate C++ code

<model>.cppmain.cpp

*.cpp

*.arxml

*.hpp

Generate Production AUTOSAR Adaptive C++ Code

32

Develop Adaptive AUTOSAR Components

▪ autosar_LaneGuidance shipping demo

33

Agenda

▪ Introduction to AUTOSAR

▪ Simulink for Classic Platform

– Automatic modeling and code generation

– Simulation of AUTOSAR ECU software

– Blocks for AUTOSAR Library routines

– Importing and exporting AUTOSAR descriptions artifacts (ARXML files)

▪ Simulink for Adaptive Platform

– A closer look at the Adaptive layers

– Motivation for Simulink to support Adaptive

– Mapping Adaptive platform to Simulink

– Code Generation for Adaptive components

▪ Polyspace for AUTOSAR

▪ Additional Resources

34

Polyspace for AUTOSAR

35

What if…?

▪ The communication between the software architect and developer is made

easy

▪ An easy setup process for verification

▪ Setup only needs the ARXML and code implementations

▪ And also check for the Run-Time errors in the code

Check if…

▪ Implementation of Software Components Follow Specifications

▪ Edits to Specifications Impact

▪ Implementation for Run-time Errors and Mismatch with Specifications

▪ Implementation Against Specification Update

36

Polyspace and AUTOSAR

ECU Hardware

RTE

Application Layer

Services

Layer

Complex

Device

Drivers

Microcontroller Abstraction Layer

ECU Abstraction Layer
Basic Software

AUTOSAR architecture

ARXML

ARXML provides

specification

of Application Layer

and link with RTE

Polyspace verifies the Application Layer

Polyspace verifies

the match between

code and ARXML

Polyspace stubs the RTE Layer

RTE Layer not verified by “Polyspace for AUTOSAR”

Not verified by “Polyspace for AUTOSAR”

37

Polyspace for AUTOSAR(R2018a)

Use Polyspace to perform a sound unit

static analysis of the components of an

AUTOSAR software

polyspace-autosar

ARXML

Polyspace code prover

New view to detail the

AUTOSAR specification
New checks to prove

that the code matches

the specification

swcA.c

swcA.h

…

swcB.c

SW-C1 SW-C2 SW-C3

38

Polyspace for AUTOSAR: How do I launch from UI?

39

Polyspace for AUTOSAR

▪ Verify ARXML against Code Demo

40

Polyspace checks AUTOSAR C++14 Rules

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf -autosar-cpp14

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf

41

Benefits of using Polyspace for AUTOSAR

• Polyspace automatically modularizes analysis based on AUTOSAR components

• Polyspace detects mismatch between code and AUTOSAR XML spec

• AUTOSAR runnable not implemented

• Invalid result of AUTOSAR runnable implementation

• Invalid use of AUTOSAR runtime environment function

• Prove absence of certain types of run-time errors in runnables (e.g. OverFlow,

divByZero)

43

Summary

AUTOSAR Blockset :
▪ Model AUTOSAR Classic and Adaptive

software components

▪ Simulate AUTOSAR compositions and ECUs

▪ Generate optimized AUTOSAR C/C++ code,
roundtrip ARXML, and perform SIL and PIL
verification (requires Embedded Coder®)

▪ Is well-suited for applications involving
embedded production deployment

▪ Is key part of Model-Based Design by providing
detailed specification of embedded software

44

AUTOSAR BlocksetAUTOSAR Support Transition

▪ R2018b and earlier ▪ R2019a and later

Simulink*

AUTOSAR Support

Package

Embedded Coder**

Simulink*

Embedded Coder**

Required

AUTOSAR

Blockset

Required for sim Required for code

Embedded Coder**

*Requires MATLAB

**Requires MATLAB Coder and Simulink Coder

45

User Articles/Presentations

▪ BMW - Model-Based Software Development:

And OEM's Perspective

▪ FCA Global Powertrain Controls - Leveraging

MBD, auto-code generation and AUTOSAR to

architect and implement an Engine Control

Application for series production

▪ LG Chem - Developing AUTOSAR and ISO

26262 Compliant Software for a Hybrid Vehicle

Battery Management System with Model-Based

Design

▪ John Deere - Vertical AUTOSAR System

Development at John Deere

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/events/conferences/automotive-conference-stuttgart/2015/proceedings/model-based-software-development-an-oems-perspective.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/leveraging-model-based-design-auto-code-generation-and-autosar-to-architect-and-implement-an-engine-control-application-for-series-production.pdf
https://www.mathworks.com/company/newsletters/articles/developing-autosar-compliant-software-for-a-hybrid-vehicle-battery-management-system-with-model-based-design.html
https://www.mathworks.com/videos/vertical-autosar-system-development-at-john-deere-1527488063826.html

46

To learn more, please visit AUTOSAR Blockset page

Simulink

for Classic

and

Adaptive

Platform

AUTOSAR

Come see us at our demo booth

