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Agenda

▪ Introduction to AUTOSAR 

▪ Simulink for Classic Platform 

– Automatic modeling and code generation

– Simulation of AUTOSAR ECU software 

– Blocks for AUTOSAR Library routines

– Importing and exporting AUTOSAR descriptions artifacts (ARXML files)

▪ Simulink for Adaptive Platform

– A closer look at the Adaptive layers

– Motivation for Simulink to support Adaptive

– Mapping Adaptive platform to Simulink

– Code Generation for Adaptive components

▪ Polyspace for AUTOSAR

▪ Additional Resources
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Introduction to AUTOSAR

▪ AUTOSAR – AUTomotive Open Systems Architecture

– Middleware standard, jointly developed by automobile manufacturers, electronics and 

software suppliers and tool vendors. 

– Motto: “cooperate on standards, compete on implementations”

Attendees

Associate Partners

Development 
Partners

Premium 
Partners

Core Partners
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A new platform for compute intensive applications
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Source: AUTOSAR Adaptive Platform Joint Meeting May 2017MIPs: Million Instructions per Second 

Audio

Linux operating system, drivers and libraries

Infotainment Platform
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Graphics Multimedia SpeechAudio

x86 or ARM-based processor
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Package 
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External 

Access
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GENIVI members build and integrate compliant products, and 

their differentiating features, tools, services
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AUTOSAR BlocksetAUTOSAR Support Transition

▪ R2018b and earlier ▪ R2019a and later

Simulink*

AUTOSAR Support 

Package

Embedded Coder**

Simulink*

Embedded Coder**

Required

AUTOSAR      

Blockset

Required for sim Required for code

Embedded Coder**

*Requires MATLAB

**Requires MATLAB Coder and Simulink Coder
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AUTOSAR Support from Embedded Coder and Simulink

ECU Hardware

Run Time Environment (RTE)

Services Layer
Complex Device 

Drivers

Microcontroller Abstraction Layer

ECU Abstraction Layer

Basic Software

AUTOSAR Software 

Component 2

AUTOSAR Software 

Component n
AUTOSAR Software 

Component 1
……….

Application Layer

Basic Software

Software Architecture Definition

Behavior 
Modeling
& Code 

Generation

Modeling and 
Simulation

Authoring Tools

BSW Configuration
& RTE Generation

Basic SW Providers
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Automatic modeling and code generation

▪ Show quick start demo, edit in code perspective UI and AUTOSAR dict, 

code gen



11

Functional simulation of AUTOSAR basic software is critical 

for AUTOSAR ECU development

Basic Software

Application Software

RTE

AUTOSAR ECU 

layered architecture Many calls between application software and basic 

software

Basic software functionality is highly dynamic

Simulation of basic software reduces development 

time and improves software quality
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Basic software library makes functional simulation of 

AUTOSAR basic software as easy as pressing the play 

button

Detailed Specifications
Basic Software Library

Encapsulated in
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Simulation of AUTOSAR ECU software 

▪ Seat Belt Reminder demo
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AUTOSAR Library Routines
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Embedded 

Coder

Importing and exporting AUTOSAR descriptions (ARXML files)
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Simulink and AUTOSAR Blockset
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Import AUTOSAR XML to Simulink

Import AUTOSAR Component to Simulink

ThrottlePositionControlComposition.arxml
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AUTOSAR Software Components

Application Software

RTE

Basic Software

NvBlockSW

Component Type

ECUAbstractionSW

Component Type

ComplexDeviceDrive

rSW Component 

Type

ServicesSW

Component Type

ApplicationSW

Component Type

SensorActuatorSW

Component Type

ParameterSW

Component Type

ServiceProxySW

Component Type
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Composition Component

Composition Component

SensorActuatorSw

ComponentType

ApplicationSw

ComponentType

ComplexDevice

DriverSwComponent

Type

ApplicationSw

ComponentType

AUTOSAR Composition-Software-Component

Composition component ➔ Hierarchical aggregation of software components

▪ Compositions purely 

architectural element

– Do not impact how 

components interact with 

RTE, and code
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Adaptive AUTOSAR Foundation

High Performance Hardware/Virtual Machine

Adaptive AUTOSAR Services 

OS

Execution S/W CM DiagnosticsCommunication

API API API Service Service
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Application
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Application
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Execution Communication

API API

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

Adaptive

Application

(SW-C)

AUTOSAR Run-time for Adaptive (ARA)

Key Concept #1

Everything is a process .. as in “OS process”

OS
(POSIX 

Compliant)

API

Provides 

multi-process 

capability

OS Process #1 OS Process #2 OS Process #3 OS Process #4

Notes: Each OS Process

- Corresponds to main() in C/C++ code

- Has own memory space & namespace

- Can be single or multi-threaded
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Execution Communication
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Linux Machine 1 Linux Machine 2

Process

Key Concept #2

Service-oriented inter-process communication

Process Process Process Process Process

IPC IPC IPC IPC

NetworkIPC
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Key Concept #2

Service-oriented communication

▪ Service Interface can contain

– Methods (Functions)

– Events (Messages)

– Fields (Data)

<<interface example>>

RadarService

• result = Calibrate(config)

• [success, out_pos] = Adjust(in_pos)

• BrakeEvent

• UpdateRate
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Key Concept #3: Everything is C++

High Performance Hardware/Virtual Machine

ara::exec

Execution Mgnt.

ara::rest

RESTful

ara::per

Persistency

ara::crypto

Cryptography
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Platform Health Mgnt.

ara::tsync
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Logging & Tracing

ara::sm service

State 

Management

ara::diag service

Diagnostics

User Applications

Adaptive Application Adaptive Application Adaptive Application ASW::XYZ

Non-PF Service
ASW::ABC

Non-PF Service

ara::s2s service

Signal to Service Mapping

ara::nm service

Network 

Management

ara::ucm service

Update and Configuration Management

POSIX PSE51 / C++ STL

Operating System
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Core Types
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Motivation for Simulink to support Adaptive

▪ Simulink is heavily used for AUTOSAR Classic

▪ Customers have requested Simulink support for Adaptive platform

▪ Simulink supports service oriented modelling

▪ Embedded Coder generates C and C++ code

▪ MathWorks participates in the AUTOSAR standard development, including 

both Classic and Adaptive platforms
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Adaptive SW Architecture Concepts

Adaptive

Application

Service Interface

ProvidedPortRequiredPort

"Radar" : {

// events

"event" : {

“brakeEvent"

"parkingBrakeEvent"

},

// methods

"method" : {

"Calibrate"

"Adjust"

},

// fields

"field" : {

“updateRate"

}

}
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Out-of-box AUTOSAR support

1. Configure Model 

✓ Target

✓ AUTOSAR Dictionary

2. Generate C++ code

<model>.cppmain.cpp

*.cpp

*.arxml

*.hpp

Generate Production AUTOSAR Adaptive C++ Code
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Develop Adaptive AUTOSAR Components

▪ autosar_LaneGuidance shipping demo
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Polyspace for AUTOSAR
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What if…?

▪ The communication between the software architect and developer is made 

easy

▪ An easy setup process for verification 

▪ Setup only needs the ARXML and code implementations

▪ And also check for the Run-Time errors in the code

Check if…

▪ Implementation of Software Components Follow Specifications

▪ Edits to Specifications Impact

▪ Implementation for Run-time Errors and Mismatch with Specifications

▪ Implementation Against Specification Update
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Polyspace and AUTOSAR

ECU Hardware

RTE

Application Layer

Services 

Layer

Complex 

Device 

Drivers

Microcontroller Abstraction Layer

ECU Abstraction Layer
Basic Software

AUTOSAR architecture

ARXML

ARXML provides 

specification

of Application Layer 

and link with RTE

Polyspace verifies the Application Layer

Polyspace verifies

the match between 

code and ARXML

Polyspace stubs the RTE Layer

RTE Layer not verified by “Polyspace for AUTOSAR”

Not verified by “Polyspace for AUTOSAR”
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Polyspace for AUTOSAR(R2018a)

Use Polyspace to perform a sound unit

static analysis of the components of an 

AUTOSAR software

polyspace-autosar

ARXML

Polyspace code prover

New view to detail the 

AUTOSAR specification
New checks to prove 

that the code matches 

the specification

swcA.c

swcA.h

…

swcB.c

SW-C1 SW-C2 SW-C3
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Polyspace for AUTOSAR: How do I launch from UI?
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Polyspace for AUTOSAR

▪ Verify ARXML against Code Demo
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Polyspace checks AUTOSAR C++14 Rules

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf -autosar-cpp14

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
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Benefits of using Polyspace for AUTOSAR

• Polyspace automatically modularizes analysis based on AUTOSAR components

• Polyspace detects mismatch between code and AUTOSAR XML spec

• AUTOSAR runnable not implemented

• Invalid result of AUTOSAR runnable implementation

• Invalid use of AUTOSAR runtime environment function

• Prove absence of certain types of run-time errors in runnables (e.g. OverFlow, 

divByZero)
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Summary

AUTOSAR Blockset :
▪ Model AUTOSAR Classic and Adaptive 

software components

▪ Simulate AUTOSAR compositions and ECUs 

▪ Generate optimized AUTOSAR C/C++ code, 
roundtrip ARXML, and perform SIL and PIL 
verification (requires Embedded Coder®)

▪ Is well-suited for applications involving 
embedded production deployment

▪ Is key part of Model-Based Design by providing 
detailed specification of embedded software
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User Articles/Presentations

▪ BMW - Model-Based Software Development: 

And OEM's Perspective

▪ FCA Global Powertrain Controls - Leveraging 

MBD, auto-code generation and AUTOSAR to 

architect and implement an Engine Control 

Application for series production 

▪ LG Chem - Developing AUTOSAR and ISO 

26262 Compliant Software for a Hybrid Vehicle 

Battery Management System with Model-Based 

Design

▪ John Deere - Vertical AUTOSAR System 

Development at John Deere

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/events/conferences/automotive-conference-stuttgart/2015/proceedings/model-based-software-development-an-oems-perspective.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/it/2018/leveraging-model-based-design-auto-code-generation-and-autosar-to-architect-and-implement-an-engine-control-application-for-series-production.pdf
https://www.mathworks.com/company/newsletters/articles/developing-autosar-compliant-software-for-a-hybrid-vehicle-battery-management-system-with-model-based-design.html
https://www.mathworks.com/videos/vertical-autosar-system-development-at-john-deere-1527488063826.html
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To learn more, please visit AUTOSAR Blockset page

Simulink 

for Classic 

and 

Adaptive 

Platform

AUTOSAR

Come see us at our demo booth


