
1© 2015 The MathWorks, Inc.

Adopting Model-Based Design for

FPGA, ASIC, and SoC

Development

Hitu Sharma

Application Engineer- Signal Processing, HDL & Communication

2

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

3

FPGA, ASIC, and SoC Development Projects

67% of ASIC/FPGA projects are behind schedule

75% of ASIC projects require a silicon re-spin

Over 50% of project time is spent on verification

Statistics from 2018 Mentor Graphics / Wilson

Research survey, averaged over FPGA/ASIC

84% of FPGA projects have non-trivial

bugs escape into production

4

Many Different Skill Sets Need to Collaborate

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

SPECIFICATIONS

Verification

Analog

Hardware

Embedded

Software

Digital

Hardware

SPECIFICATIONS

SPECIFICATIONS

“In our previous, document-based

design workflow, each team

developed its own specification. This

created a communication gap

between the teams, as well as delays

and the increased risk of error”

Noritaka Kosugi, Kazuyuki Hori,

and Yuji Ishida

Hitachi

• Poor communication across teams

• Key decisions made in silos

• System-level issues found in late stages

• Hard to adapt to changing requirements

5

DESIGN

SoC Collaboration with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog

Hardware

Embedded

Software
Digital

Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export

Models
V

e
rific

a
tio

n
V

a
lid

a
tio

n
 &

HOW am I

making it?

Is it going to

work?

WHAT am I

making?

MAKE IT!
Have I made

it right?

Am I making

the right

thing?

6

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

7

DESIGN

Algorithms

System Architecture

Implementation Architectures

MATLAB Simulink

✓ Large data sets

✓ Explore mathematics

✓ Control logic

✓ Data visualization

✓ Parallel architectures

✓ Timing

✓ Data type propagation

✓ Mixed-signal modeling

General Approach: Use the Strengths of MATLAB and Simulink

DESIGN

Algorithms

System Architecture

Implementation Architectures

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

8

Partition Hardware-Targeted Design, System Context, Testbench

Hardware

Algorithm

Algorithm

Stimulus
Analysis

Software

Algorithm

9

Streaming Algorithms: MATLAB or Simulink…or Both

10

Refine Algorithm and Verify Against Golden Reference

Algorithm

Stimulus

Verification

“Scoreboard”

Design Under Test

Reference

Algorithm

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Self-checking

11

Verification

“Scoreboard”

Generate SystemVerilog DPI Components for RTL Verification

Algorithm

Stimulus

SystemVerilog verification environment

Scoreboard

Design Under

Test (DUT) RTL
Driver Monitor

Seq.

Items

Scoreboard

▪ Reuse MATLAB/Simulink models in verification

– Scoreboard, stimulus, or models external to the RTL

▪ Generate from frame-based or streaming algorithm

▪ Floating-point or fixed-point

▪ Individual components or entire testbench

– Runs natively in SystemVerilog simulator

– Eliminate re-work and miscommunication

– Save testbench development time

– Easy to update when requirements change

HDL

Verifier

DPI C

DPI C

DPI C

HDL

Verifier

DPI C

Reference

Algorithm

12

MATLAB / Simulink

What if there’s a mismatch?

HDL Simulator

DUT

RTL

HDL Verifier

cosimulation

▪ Co-simulate with 3rd-party HDL simulator

– Reuse MATLAB/Simulink test environment

– Run HDL design in a supported simulator*

– Generate co-simulation infrastructure and

handshaking

– Analyze both the design and test

environment

* Mentor Graphics® ModelSim® or Questa ®

Cadence ® Incisive ® or XceliumTM

Algorithm

Stimulus

Verification

“Scoreboard”

Reference

Algorithm

13

Collaborate to Add Hardware Architecture

Optimize architecture

design for hardware goals

Specify HDL implementation options

14

Fixed-Point Streaming Algorithms: Manual Approach

15

Fixed-Point Streaming Algorithms: Automated Approach

Simulate with

representative data to

collect required ranges

Fixed-Point

Designer proposes

data types

Choose to apply

proposed types

or set your own

Simulate and

compare

results

16

Automatically Generate Production RTL

DESIGN

Algorithms

Implementation Architectures

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Implementation

Knowledge

HDL

Coder

Synthesizable RTL

AXI Interfaces

Synthesis scripts

▪ Choose from over 250 supported blocks

– Including MATLAB functions and Stateflow charts

▪ Quickly explore implementation options

– Micro-architectures

– Pipelining

– Resource sharing

– Fixed-point or native floating point

▪ Generate readable, traceable Verilog/VHDL

– Optionally generate AXI interfaces with IP core

▪ Quickly adapt to changes and re-generate

▪ Production-proven across a variety of

applications and FPGA, ASIC, and SoC targets

17

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

18

Solution
Adopted Model-Based Design to enable teams to verify the specification via a

model in a shared simulation environment. The system design and FPGA

design teams use the model as an executable specification. The model is

refined and elaborated throughout the design process, and HDL code is

automatically generated for logic synthesis and implementation.

Results
▪ 70% effort reduction for design projects

▪ Nearly equivalent FPGA performance, power, and resource usage

▪ Adopted across more than 10 product development projects

“We have adopted Model-Based

Design with MATLAB® and Simulink®

as our standard development

workflow for FPGA design. As a

result, we have improved

communication between teams,

reduced development time, and

reduced risk by evaluating system

performance early in the design

process.”
Link to article

Model-Based Design Results for Communications

System Development at Hitachi

http://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html?s_tid=srchtitle

19

DESIGN

Getting Started Collaborating with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog

Hardware

Embedded

Software
Digital

Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export

Models

V
e
rific

a
tio

n
V

a
lid

a
tio

n
 &

❑ Refine algorithm toward implementation

❑ Verify refinements versus previous versions

❑ Generate verification models

❑ Add hardware implementation detail and

generate optimized RTL

❑ Simulate System-on-Chip architecture

➢ Eliminate communication gaps

➢ Key decisions made via cross-skill collaboration

➢ Identify and address system-level issues before

implementing subsystems

➢ Adapt to changing requirements with agility

20© 2015 The MathWorks, Inc.

What's New!

21

Model and Simulate SoC Architecture

▪ Simulate behavior and latency

– Algorithm, memory, internal and external

connectivity

– Scheduling and OS effects

– Real streaming I/O data

▪ Diagnose software performance and

hardware utilization

▪ Adjust core algorithms so they work

in the actual hardware context

Implementation

Knowledge

DESIGN

Algorithms

System Architecture

Implementation Architectures

Hardware sample rate Initialization signals

Asynchronous events

AXI registers

External Memory

I/O SoC I/O

SoC Blockset

22

DPI feature will generate SystemVerilog enum from Simulink and MATLAB enum

data types on interface.

Enhanced Data Type Support for SystemVerilog DPI

Generation: Enum

Before After

Simulink or MATLAB

enum type

23

PCI Express based MATLAB as AXI Master for Xilinx

FPGA Boards

▪ Provides faster performance than JTAG and Ethernet

based MATLAB as AXI Master

▪ Not board specific.

▪ Demo available:

– copyXilinxFPGAExampleFiles(‘pcieaximaster’)

▪ To use on host:

– mem = aximaster(‘Xilinx’, ‘Interface’, ‘PCIe’);

– writememory(mem, ‘C000000’, wrdata);

– rddata = readmemory(mem, ‘C00000000’, ‘uint8’);

Provide HDL IP core for Xilinx Vivado designs

to support AXI4 read and write operations over

a PCI Express connection.

24

Learn More

▪ Next steps to get started with:

– Verification: Improve RTL Verification by Connecting to MATLAB webinar

– Fixed-point quantization: Fixed-Point Made Easy webinar

– Incremental refinement, HDL code generation: HDL self-guided tutorial

▪ Visit us at the demo booth for detailed update on SoC block set and HDL

Verifier workflow.

https://www.mathworks.com/videos/improve-rtl-verification-by-connecting-to-matlab-1551796133310.html?s_tid=srchtitle
https://www.mathworks.com/videos/fpga-for-dsp-applications-fixed-point-made-easy-1495129243550.html
https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial

25

Training Services
Exploit the full potential of MathWorks products

Flexible delivery options:

▪ Public training available in several cities

▪ Onsite training with standard or

customized courses

▪ Web-based training with live, interactive

instructor-led courses

More than 48 course offerings:

▪ Introductory and intermediate training on MATLAB, Simulink,

Stateflow, code generation, and Polyspace products

▪ Specialized courses in control design, signal processing, parallel computing,

code generation, communications, financial analysis,

and other areas

www.mathworks.in/training

http://www.mathworks.com/training

26

Generating HDL Code from Simulink
This two-day course shows how to generate and verify HDL code from a Simulink® model using HDL

Coder™ and HDL Verifier™

Topics include:

▪ Preparing Simulink models for HDL code generation

▪ Generating HDL code and testbench for a compatible Simulink model

▪ Performing speed and area optimizations

▪ Integrating handwritten code and existing IP

▪ Verifying generated HDL code using testbench and cosimulation

27

Verification and Validation of Simulink Models

After this 1-day course

you will be able to:

▪ Verify models using

simulation test cases.

▪ Verify models using

formal methods.

▪ Automate the execution

and documentation of

test suites.

28

Speaker Details

Email: hitu.sharma@mathworks.in

Lined in :https://www.linkedin.com/in/hitu-

sharma-99095218/

Contact MathWorks India

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.

www.linkedin.com/in/vidyaviswanathan

mailto:info@mathworks.in

