MATLAB EXPO 2018

Tackling Big Data Using MATLAB

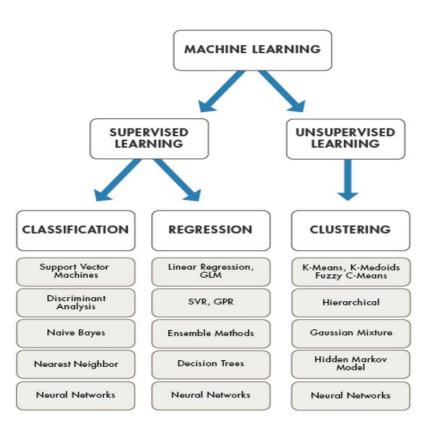
Alka Nair Application Engineer

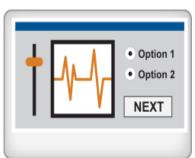
Building Machine Learning Models with Big Data

Access

Preprocess,
Exploration &
Model Development

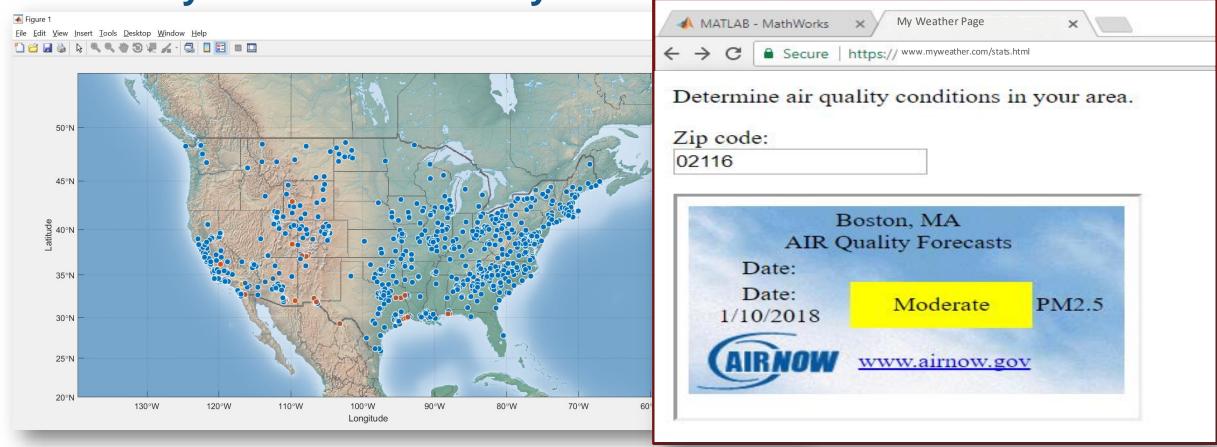
Scale up & Integrate with Production Systems

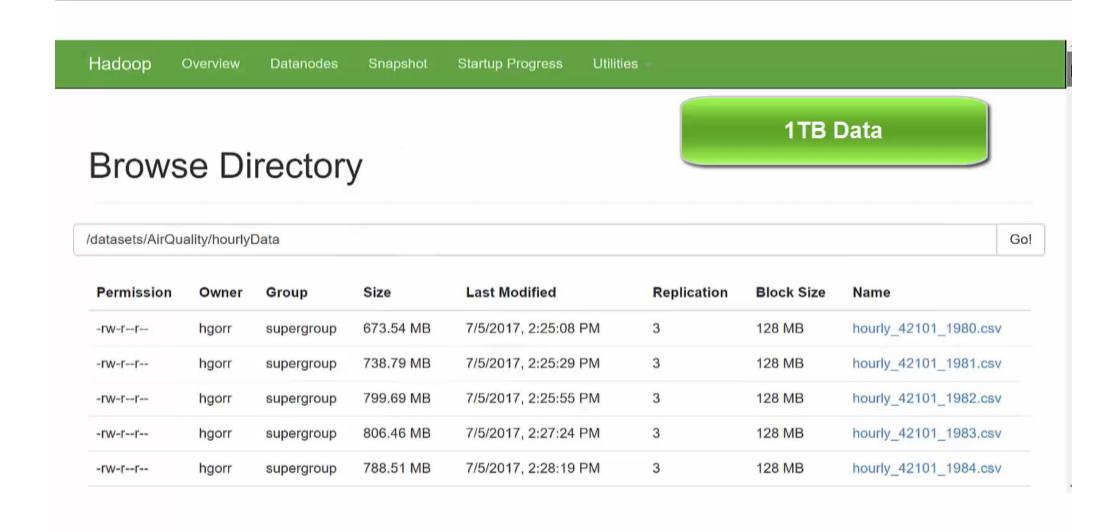




MATLAB EXPO 2018

Case study: Predict Air Quality



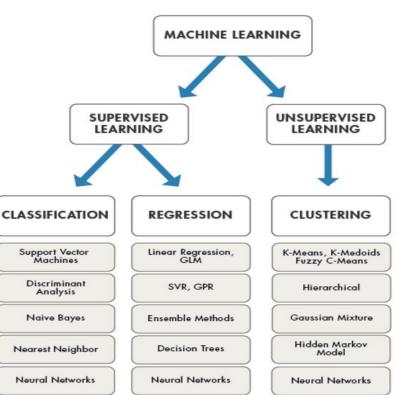


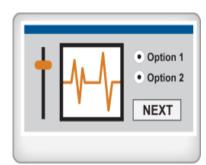
Building Machine Learning Models with Big Data

Access

Preprocess, Exploration & Model Development

Scale up & Integrate with Production Systems





Challenges in Modeling and Deploying Big Data Applications

Access

Preprocess,
Exploration & Model
Development

Scale up & Integrate with Production Systems

- Distributed Data Storage
- Different Data Sources & Types

- Preprocessing and Visualizing Big Data
- Parallelizing Jobs and Scaling up Computations to Cluster

Enterprise level deployment

Managing Different APIs for Data Sources and Data Formats

 Rewriting Algorithms to Use Big Data Platforms

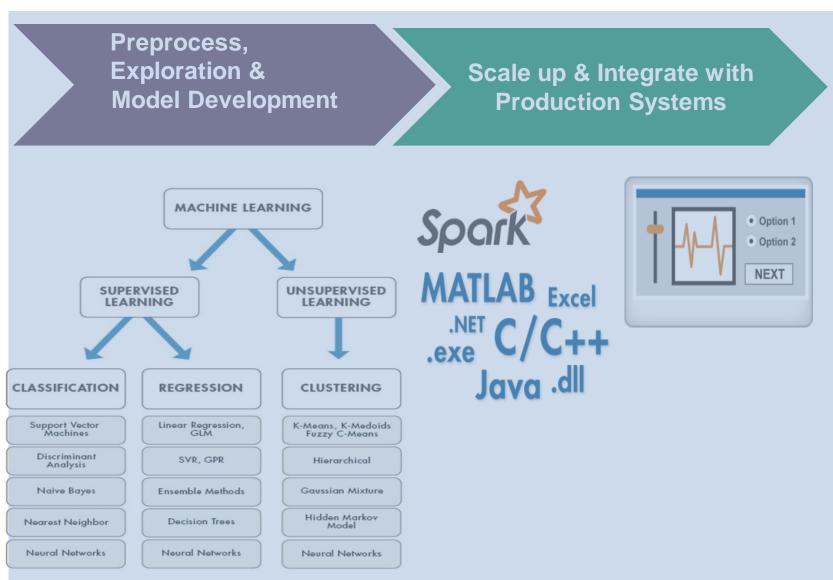
 Parallelizing Code to Scale up to Use Cluster and Cloud Compute Overhead in Moving the Algorithm to Production

MATLAB EXPO 2018

Wouldn't it be nice if you could:

- Easily access data however it is stored
- Prototype algorithms quickly using small data sets
- Scale up to big data sets running on large clusters
- Using the same intuitive MATLAB syntax you are used to

Building machine learning models with big data



Access and Manage Big Data

Different Data Types

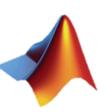
- Text
- Images
- Spreadsheet
- Custom File Formats

Different Data Sources

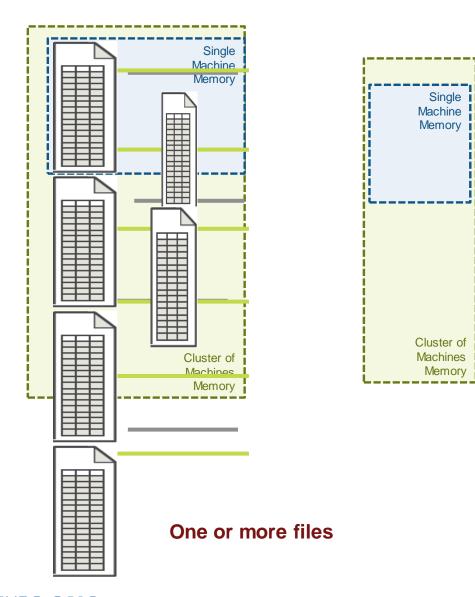
- Hadoop Distributed File System (HDFS)
- Amazon S3
- Windows Azure BlobStorage
- Relational Database
- HDFS on Hortonworks or Cloudera

Different Applications

- MapReduce
- Image Segmentation
- Image Classification
- Denoising Images
- Predictive Maintenance



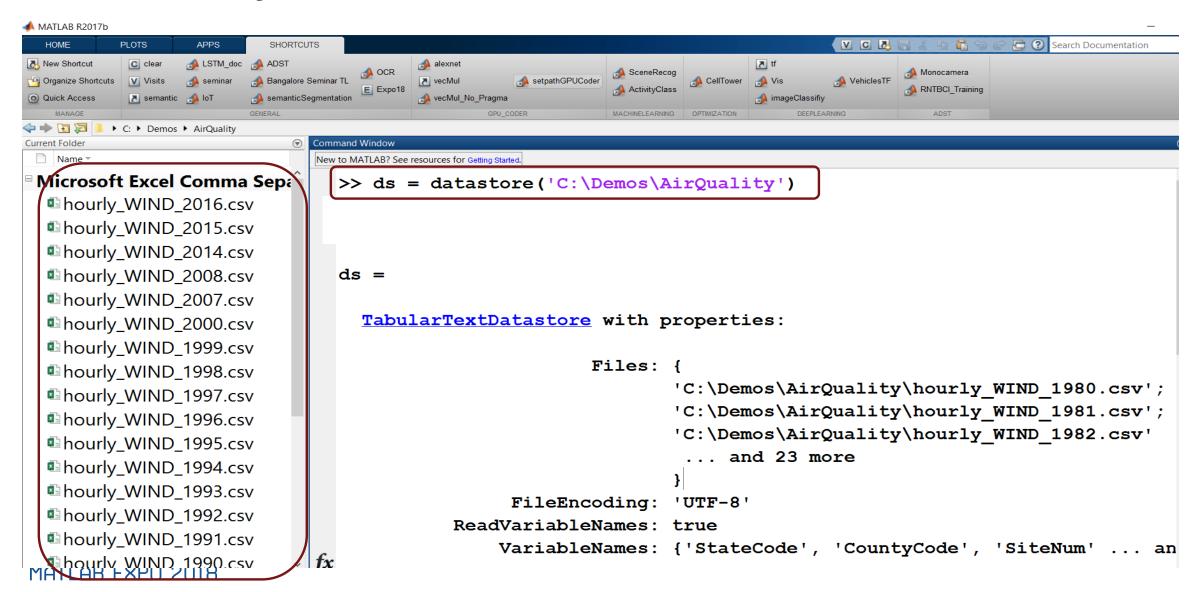
Datastore



Process

MATLAB EXPO 2018

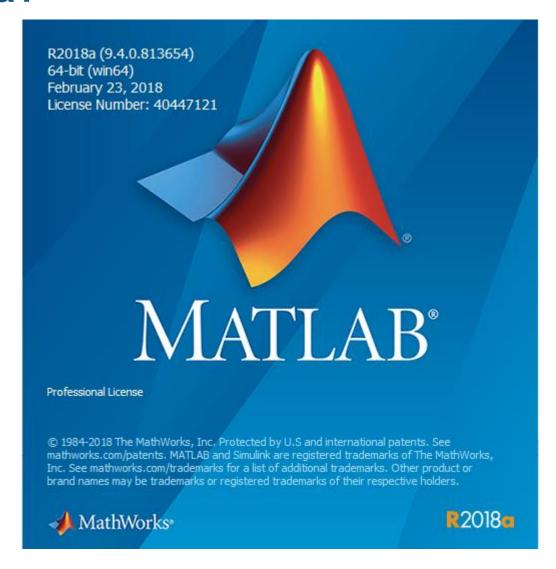
Air Quality Data on Local Folder



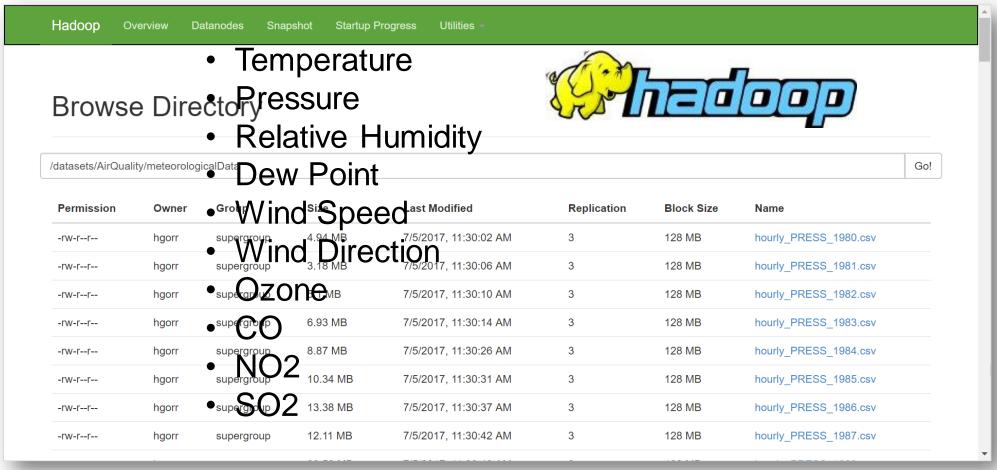
Accessing and Processing different types of data

TabularTextDatastore	Text files containing column-oriented data, including CSV files
ImageDatastore	Image files, including formats that are supported by imread such as JPEG and PNG
SpreadsheetDatastore	Spreadsheet files with a supported Excel® format such as .xlsx
MDFDatastore	Datastore for collection of MDF files
Custom Datastore	Datastore for custom or proprietary format

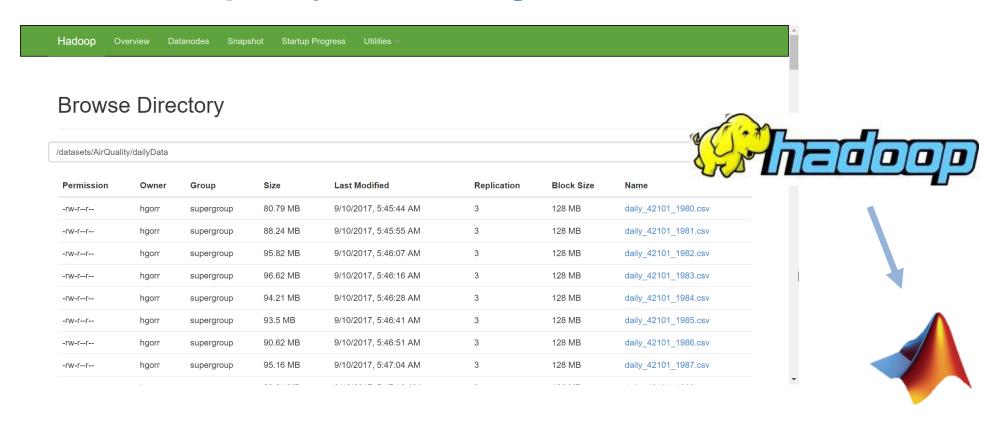
You have 1 TB of data you've never seen before. How do you access this data?



Historical files are on HDFS and real time data are available through an API



Access air quality data using datastore



```
files = 'hdfs://hadoop@1glnxa64:5431@/datasets/AirQuality/daily_442@1_*.csv';
ds5 = datastore(files,'TextType','string');
```


Preview the data and adjust properties to best represent the data of interest

de CalactadVaniahlaNamae - vans:
preview(ds)

ans = 8×6 table

	DateLocal	UnitsOfMeasure	ArithmeticMean	AQI	StateName	CountyName
1	"1980-04-04"	Parts per m	0.0475	"67"	Alabama	Autauga
2	"1980-04-05"	Parts per m	0.0366	"67"	Alabama	Autauga
3	"1980-04-06"	Parts per m	0.0558	"84"	Alabama	Autauga
4	"1980-04-07"	Parts per m	0.0439	"61"	Alabama	Autauga
5	"1980-04-08"	Parts per m	0.0442	"49"	Alabama	Autauga
6	"1980-04-09"	Parts per m	0.0428	"58"	Alabama	Autauga
7	"1980-04-10"	Parts per m	0.0340	"67"	Alabama	Autauga
8	"1980-04-11"	Parts per m	0.0416	"49"	Alabama	Autauga

Access data from anywhere with minimal changes

```
setenv('AWS_ACCESS_KEY_ID', 'ACCESS_KEY_ID')
setenv('AWS_SECRET_ACCESS_KEY', 'ACCESS_KEY')

fileLoc = 'datasets/FoodImages';

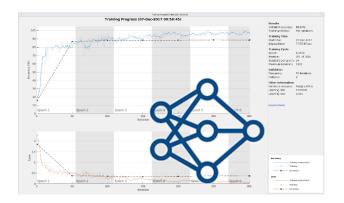
ds = imageDatastore(fileLoc);
```


Datastores enable big data workflows

Deep Learning

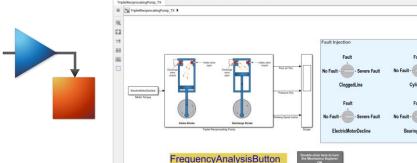
ds = imageDatastore(fileLoc);


```
[trainDS, valDS, testDS] = splitEachLabel(ds,...
0.7,0.15,0.15, 'randomized');
```

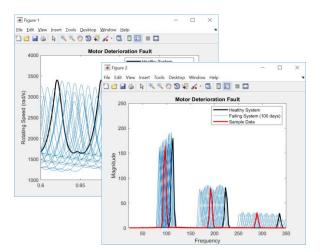
net = trainNetwork(trainDS,layers,trainOpts);

Datastores enable big data workflows



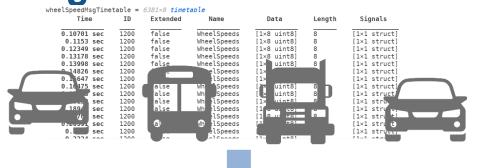
Predictive Maintenance

ds = simulationEnsembleDatastore(location)



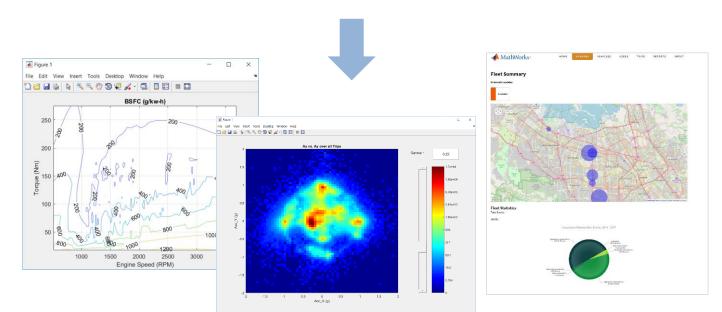
Days to Failure = 33.728 days

Datastores enable big data workflows



Fleet Analytics

ds = mdfDatastore(fileLoc);



Datastores: Access Big Data with Minimal Changes

Different Data Types

- Text
- Images
- Spreadsheet
- Custom File Formats

Different Data Sources

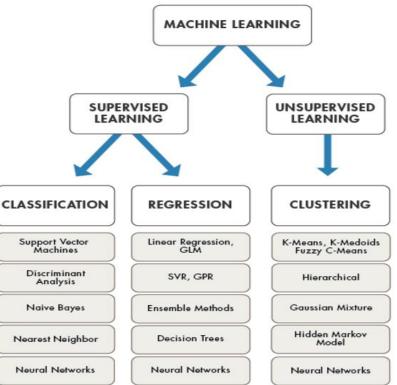
- Hadoop Distributed File System (HDFS)
- Amazon S3
- Windows Azure Blob Storage
- Relational Database
- HDFS on Hortonworks or Cloudera

Different Applications

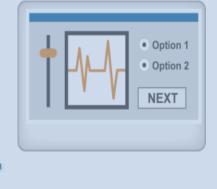
- MapReduce
- Image Segmentation
- Image Classification
- Denoising Images
- Predictive Maintenance

Building machine learning models with big data

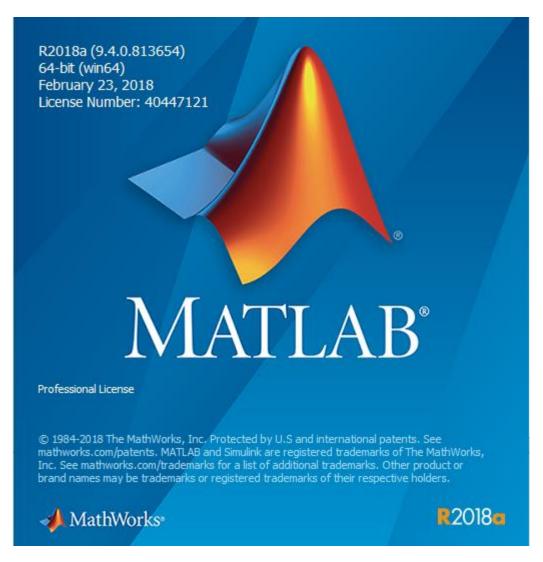
Preprocess, Exploration & Model Development



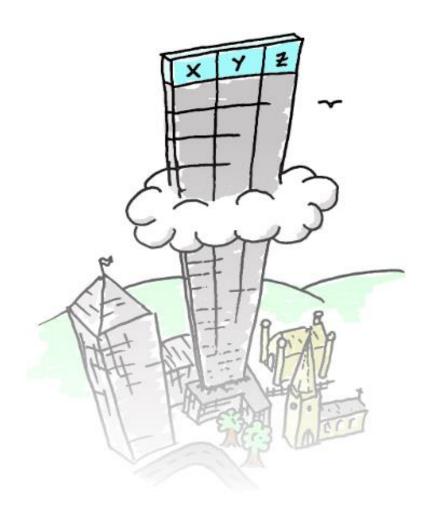
Scale up & Integrate with Production Systems



You have 1TB of data you've never seen before. How do you visualize and process the data?



Use tall arrays to work with the data like any MATLAB array



Introduction to Tall Arrays

Tall Arrays for Big Data Visualization and Preprocessing

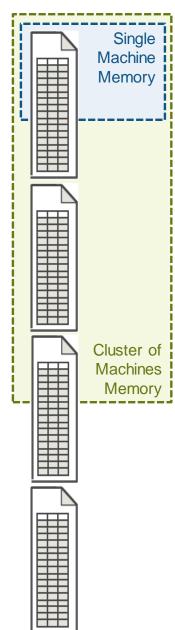
Machine Learning for Big Data Using Tall Arrays

Tall arrays Single Machine

- Data is in one or more files
- Files stacked vertically
- Typically tabular data

Challenge

- Data doesn't fit into memory (even cluster memory)
- Takes a lot of time for even simple operations on data



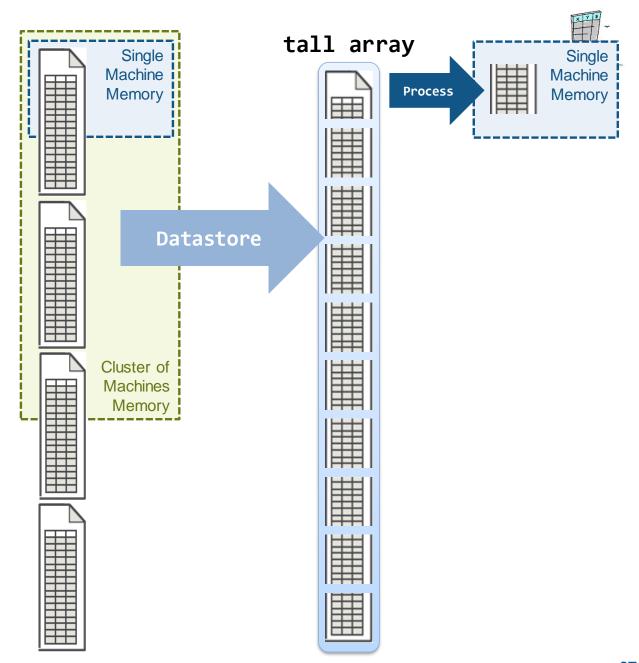
Tall arrays (new R2016b)

Create tall table from datastore

```
ds = datastore('*.csv')
tt = tall(ds)
```

Operate on whole tall table just like ordinary table

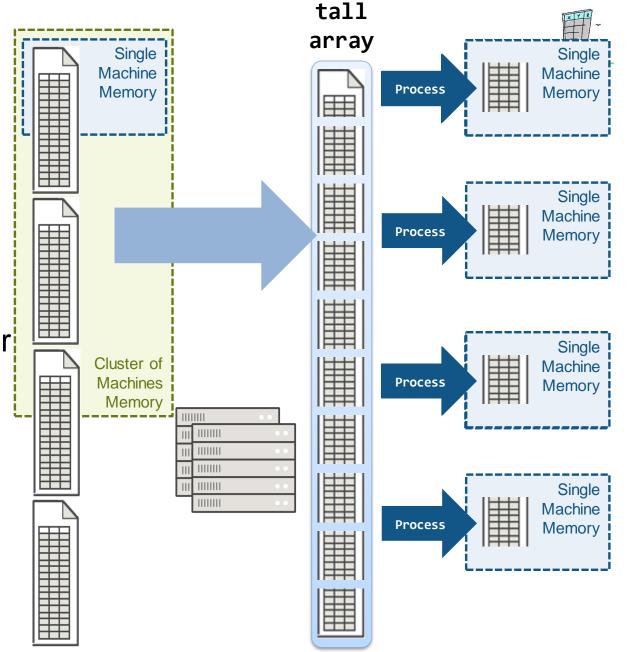
```
summary(tt)
max(tt.EndTime - tt.StartTime)
```



tall arrays R2016b

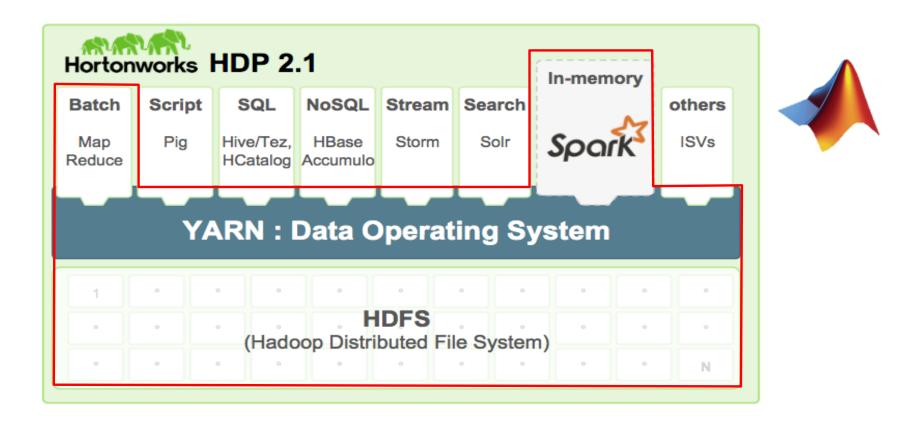
 With Parallel Computing Toolbox, process several "chunks" at once

 Can scale up to clusters with MATLAB Distributed Computing Server



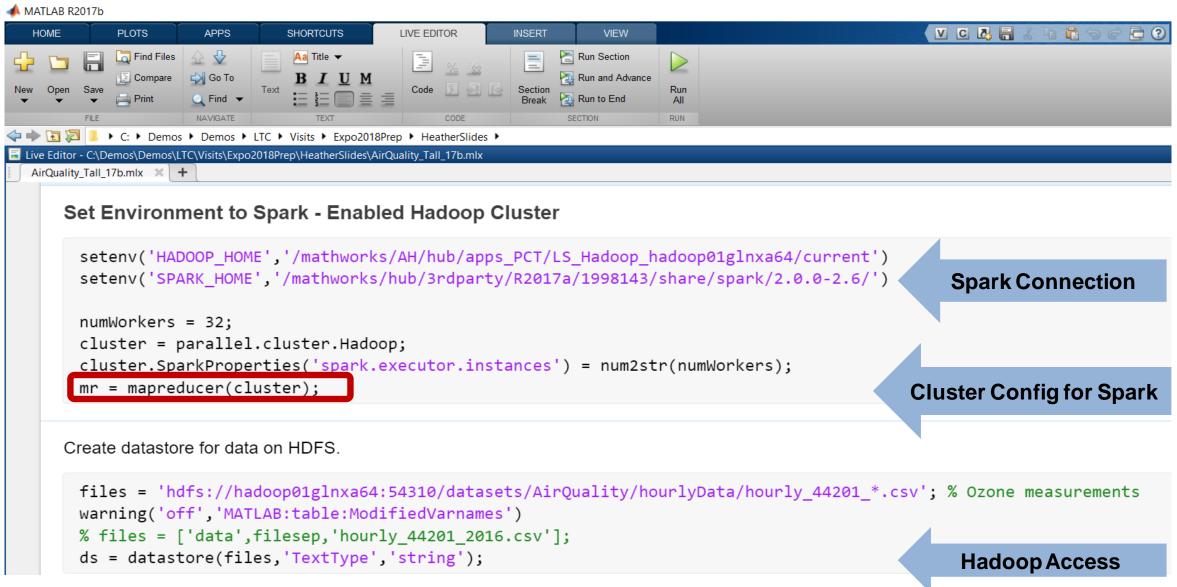
MathWorks[®]

Use a Spark-enabled Hadoop cluster and MATLAB



Support for many other platforms through reference architectures

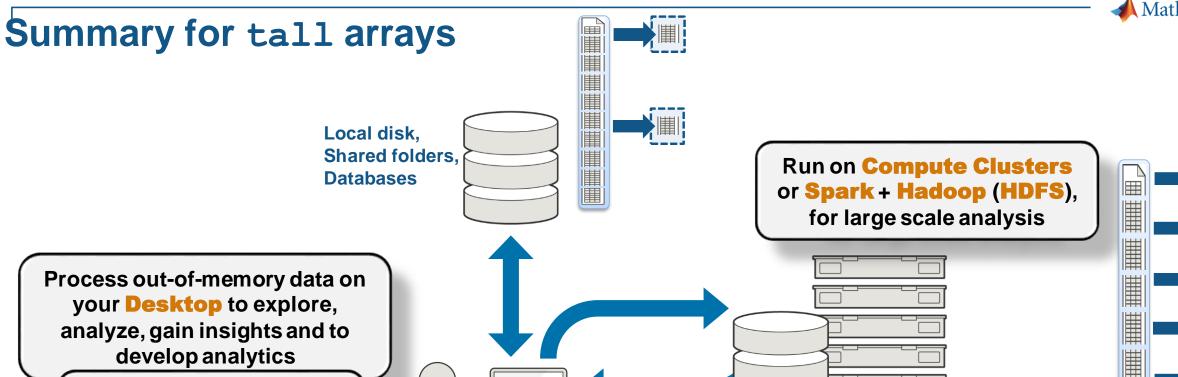
It's easy to run MATLAB code on Spark + Hadoop



MATLAB Documentation for

Build Effective Algorithms with MapReduce

Example Link	Primary File	Description	Notable Programming Techniques
Find Maximum Value with MapReduce	MaxMapReduceExample.m	Find maximum arrival delay	One intermediate key and minimal computation.
Compute Mean Value with MapReduce	MeanMapReduceExample.m	Find mean arrival delay	One intermediate key with intermediate state (accumulating intermediate sum and count).
Create Histograms Using MapReduce	VisualizationMapReduceExample.m	Visualize data using histograms	Low-volume summaries of data, sufficient to generate a graphic and gain preliminary insights.
Compute Mean by Group Using MapReduce	MeanByGroupMapReduceExample.m	Compute mean arrival delay for each day of the week	Perform simple computations on subgroups of input data using several intermediate keys.
Compute Maximum Average HSV of Images with MapReduce	HueSaturationValueExample.m	Determine average maximum hue, saturation, and brightness in an image collection	Analyzes an image datastore using three intermediate keys. The outputs are filenames, which can be used to view the images.
Simple Data Subsetting Using MapReduce	SubsettingMapReduceExample.m	Create single table from subset of large data set	Extraction of subset of large data set to look for patterns. The procedure is generall using a parameterized map function to in the subsetting criteria.



Use Parallel Computing
Toolbox for increased
performance

MATLAB Distributed Computing Server,
Spark+Hadoop

Develop your code locally using Tall Arrays or MapReduce only once

Use the same code to scale up to cluster

Create a tall array for each datastore

```
ozone = tall(ds)
```

Starting a Spark Job on the Hadoop cluster. This could take a few minutes ...done. ozone =

M×4 **tall** table

DateLocal	ArithmeticMean	IQA	StateName
"1980-04-04"	0.0475	"67"	Alabama
"1980-04-05"	0.036588	"67"	Alabama
"1980-04-06"	0.055824	"84"	Alabama
"1980-04-07"	0.043941	"61"	Alabama
"1980-04-08"	0.044235	"49"	Alabama
"1980-04-09"	0.042765	"58"	Alabama
"1980-04-10"	0.034	"67"	Alabama
"1980-04-11"	0.041647	"49"	Alabama
:	:	:	:
:	:	:	:

ozone

Execution model makes operations more efficient on big data

tt : tall array

```
a = tt.Month;
b = tt.DayofMonth;
c = mean(tt.DayofMonth);
d = std(tt.DayOfWeek);
e = numel(tt.AirTime);
f = tt.TaxiOut;
f(isnan(f)) = 0;
g = movmean(tt.ArrDelay,10);
calc3 = (a + b).*c + d.*f.*g;
calc3_result = gather(calc3);
```

Deferred evaluation

- Commands are not executed right away
- Operations are added to a queue

Execution triggers include:

- gather function
- summary function
- Machine learning models
- Plotting

Execution model makes operations more efficient on big data

```
a = tt.Month;
b = tt.DayofMonth;
c = mean(tt.DayofMonth);
d = std(tt.DayOfWeek);
e = numel(tt.AirTime);
f = tt.TaxiOut;
f(isnan(f)) = 0;
g = movmean(tt.ArrDelay,10);
calc3 = (a + b).*c + d.*f.*g;
calc3 result = gather(calc3);
```

```
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 3 sec
- Pass 2 of 2: Completed in 3 sec
Evaluation completed in 7 sec
  tall double
Preview deferred. Learn more.
```

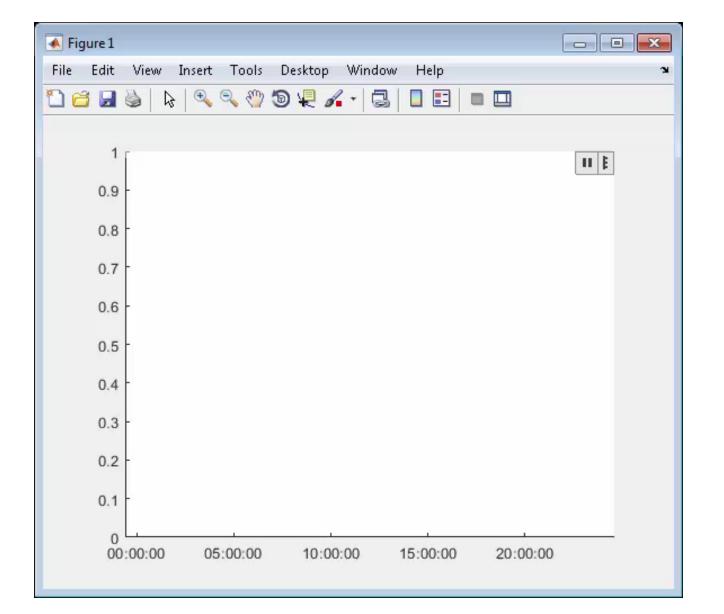
Unnecessary results are not computed

✓ Introduction to Tall Arrays

Tall Arrays for Big Data Visualization and Preprocessing

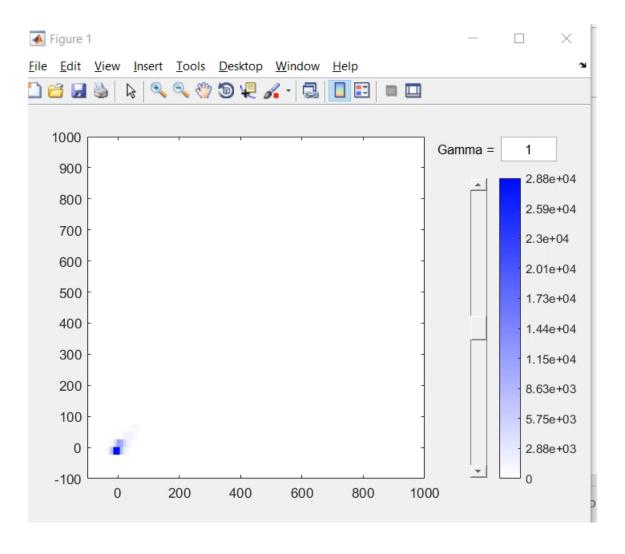
Machine Learning for Big Data Using Tall Arrays

Explore Big Data with Tall Visualizations



plot scatter binscatter histogram histogram2 ksdensity

Explore Big Data with Tall Visualizations



Get a summary of the data

tt – tall table

```
s = summary(ozone)
```

Evaluating tall expression using the Spark Cluster:
- Pass 1 of 1: Completed in 49 sec
Evaluation completed in 50 sec

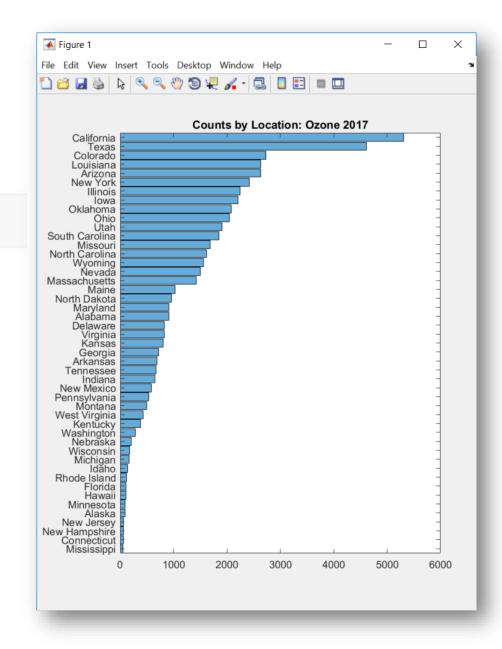
```
s = struct with fields:
```

DateLocal: [1×1 struct]

ArithmeticMean: [1×1 struct]

AQI: [1×1 struct]

StateName: [1×1 struct]



Use data types to best represent the data

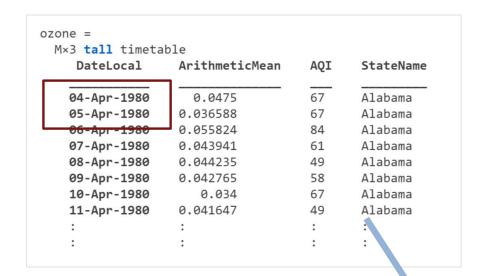
```
ozone.DateLocal = datetime(ozone.DateLocal, 'InputFormat', 'uuuu-MM-dd');
ozone = table2timetable(ozone);
ozone.AQI = double(ozone.AQI)
ozone =
  M×3 tall timetable
     DateLocal
                  ArithmeticMean
                                    AQI
                                           StateName
                                    67
                                           Alabama
    04-Apr-1980
                    0.0475
    05-Apr-1980
                                    67
                                           Alabama
                  0.036588
    06-Apr-1980
                  0.055824
                                    84
                                           Alabama
    07-Apr-1980
                  0.043941
                                           Alabama
                                    61
    08-Apr-1980
                  0.044235
                                    49
                                           Alabama
    09-Apr-1980
                  0.042765
                                    58
                                           Alabama
    10-Apr-1980
                     0.034
                                           Alabama
                                    67
    11-Apr-1980
                  0.041647
                                    49
                                           Alabama
```

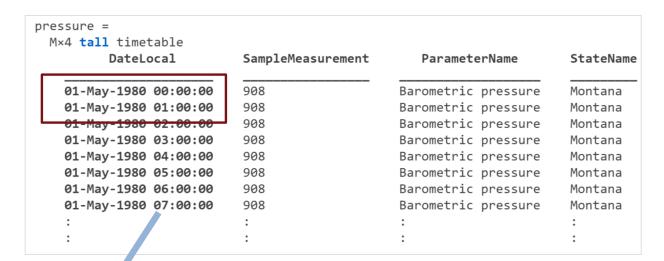

Managing Big and Messy Time-stamped Data

Functions

timetable	Timetable array with time-stamped rows and variables of different types
retime	Resample or aggregate data in timetable, and resolve duplicate or irregular times
synchronize	Synchronize timetables to common time vector, and resample or aggregate data from input timetables
lag	Time-shift data in timetable
table2timetable	Convert table to timetable
array2timetable	Convert homogeneous array to timetable
timetable2table	Convert timetable to table
istimetable	Determine if input is timetable
isregular	Determine whether times in timetable are regular
timerange	Time range for timetable row subscripting
withtol	Time tolerance for timetable row subscripting
vartype	Subscript into table or timetable by variable type
rmmissing	Remove missing entries
issorted	Determine if array is sorted
sortrows	Sort rows of matrix or table
unique	Unique values in array

Use the results of explorations to help make decisions





DateLocal	StateName	IQA	03	Synchr	onize t	o daily	Т	Р	WindDir	WindSpd	DP	RH
01-Jan-1980	New York		0.004235	data	48.292	30.125	44.596	970.26	157.94	5.7067	28	64.995
		1		u a ta								
02-Jan-1980	New York	14	0.006118	_ 1	42.333	23.083	44.052	960.81	221.61	6.0492	26	81.171
93-Jan-1980	New York	17	0.014706	_Bv49@a	ITPOP17	21.917	40.094	971.5	249.59	7.7008	11	79.39
94-Jan-1980	New York	15	0.008353	1.0833	37.75	24.375	40.07	982.47	251.96	5.2913	28	70.364
95-Jan-1980	New York	24	0.017176	0.7375	33.917	25.042	40.054	987.97	248.6	4.2533	25	66.574
96-Jan-1980	New York	21	0.015176	1.0292	48.125	26.375	46.059	990.06	195.86	3.3733	16	55.074
97-Jan-1980	New York	19	0.017353	1.5458	65.542	36.042	49.698	984.93	186.6	3.0873	22	78.042
98-Jan-1980	New York	15	0.009412	0.95652	40.957	25.957	52.472	979.23	141.23	2.2872	17	93.658
:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:

Synchronize all data to daily times

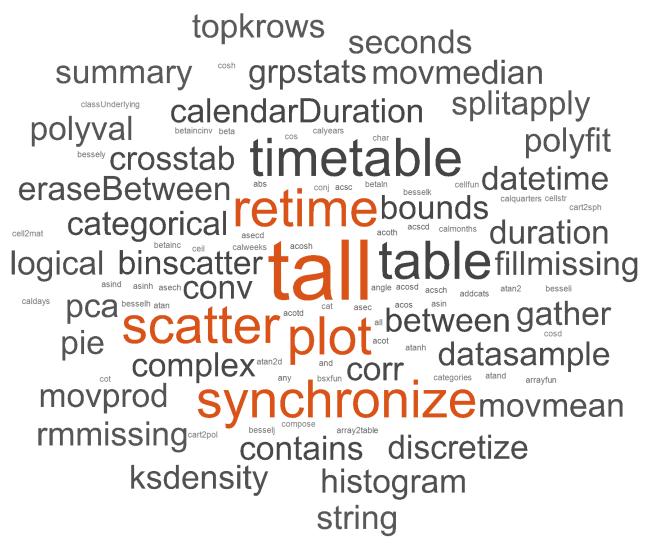
```
dailyMeteorologicalData = synchronize(T,P,WindDir,WindSpd,DP,RH,'daily','mean');
```

dailyData = synchronize(03,C0,S02,N02,dailyMeteorologicalData);

Clean messy data using common preprocessing functions

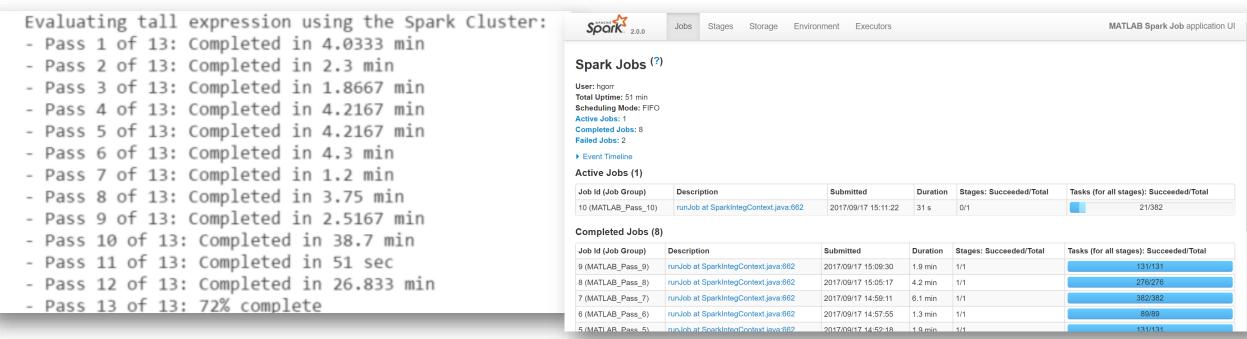
```
ozone = sortrows(ozone);
ozone = rmmissing(ozone, 'MinNumMissing',6);
ozone.eightHr = [smoothdata(ozone.SampleMeasurement, 'movmean',8);
daily8hrmax = retime(ozone(:,'eightHr'),'daily','max')
daily8hrmax =
  M×1 tall timetable
    DateLocal
               eightHr
Preview deferred. Learn more.
```


Use familiar MATLAB functions on tall arrays



You don't need to leave MATLAB to monitor large jobs





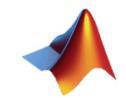
Save preprocessed data

newfiledir = 'hdfs://hadoop01glnxa64:54310/datasets/AirQuality/preprocessedData/'; write(newfiledir,dailyData)

Writing tall data to folder hdfs://hadoop01glnxa64:54310/datasets/AirQuality/preprocessedData/ Evaluating tall expression using the Spark Cluster:

- Pass 1 of 13: Completed in 4.0333 min
- Pass 2 of 13: Completed in 2.3 min
- Pass 3 of 13: Completed in 1.8667 min
- Pass 4 of 13: Completed in 4.2167 min
- Pass 5 of 13: Completed in 4.2167 min
- Pass 6 of 13: Completed in 4.3 min
- Pass 7 of 13: Completed in 1.2 min
- Pass 8 of 13: Completed in 3.75 min
- Pass 9 of 13: Completed in 2.5167 min
- Pass 10 of 13: Completed in 38.7 min
- Pass 11 of 13: Completed in 51 sec
- Pass 12 of 13: Completed in 26.833 min
- Pass 13 of 13: 72% complete

Evaluation 98% complete



Tladoop		Onapanot

Browse Directory

/datasets/AirQuality/preprocessedData/California

part-011-spapshot sed

	-y-pp						
Permission	Owner	Group	Size	Last Modified	Replication	Block Size	Name
-rw-rr	hgorr	supergroup	32.98 KB	9/18/2017, 3:06:43 PM	3	128 MB	part-001-snapshot.seq
-rw-rr	hgorr	supergroup	2.96 KB	9/18/2017, 3:05:52 PM	3	128	
-rw-rr	hgorr	supergroup	3.03 KB	9/18/2017, 3:06:05 PM	3	128	part-001-snapshot.seq
-rw-rr	hgorr	supergroup	2.96 KB	9/18/2017, 3:05:38 PM	3	128	<u> </u>
-rw-rr	hgorr	supergroup	3.04 KB	9/18/2017, 3:05:52 PM	3	128	part-002-snapshot.seq
-rw-rr	hgorr	supergroup	2.95 KB	9/18/2017, 3:05:44 PM	3	128	part-002-snapshot.seq
-rw-rr	hgorr	supergroup	2.9 KB	9/18/2017, 3:06:29 PM	3	128	
-rw-rr	hgorr	supergroup	3 KB	9/18/2017, 3:07:02 PM	3	128	part-003-snapshot.seq
-rw-rr	hgorr	supergroup	2.97 KB	9/18/2017, 3:06:59 PM	3	128 MB	part-009-snapshot.seq
-rw-rr	hgorr	supergroup	3.02 KB	9/18/2017, 3:07:37 PM	3	128 MB	part-010-snapshot.seq

9/18/2017, 3:07:15 PM

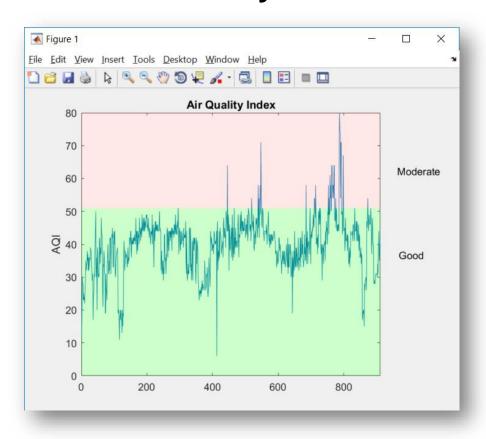
✓ Introduction to Tall Arrays

✓ Tall Arrays for Big Data Visualization and Preprocessing

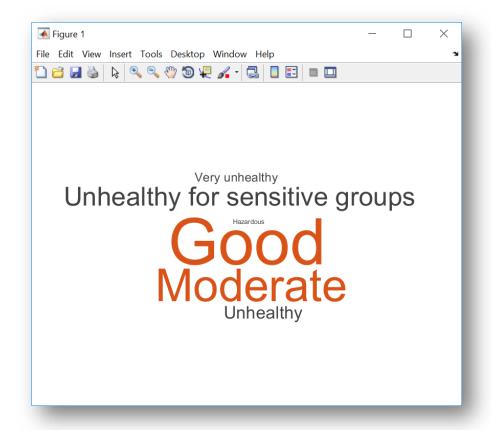
Machine Learning for Big Data Using Tall Arrays

Predict air quality

Air Quality Index



Air Quality Label

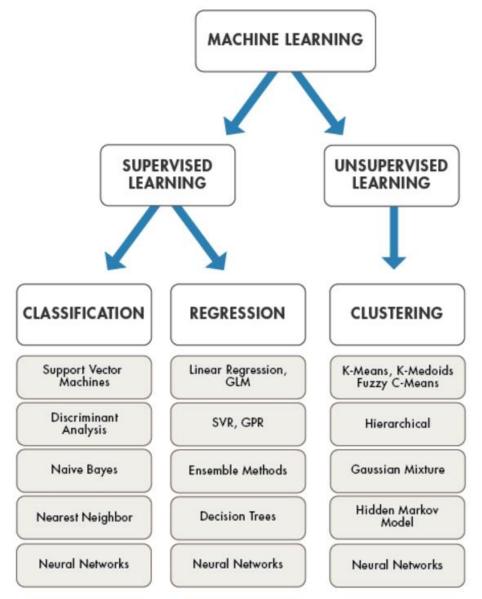


Regression

Classification

How do you know which model to use?

Try them all ☺

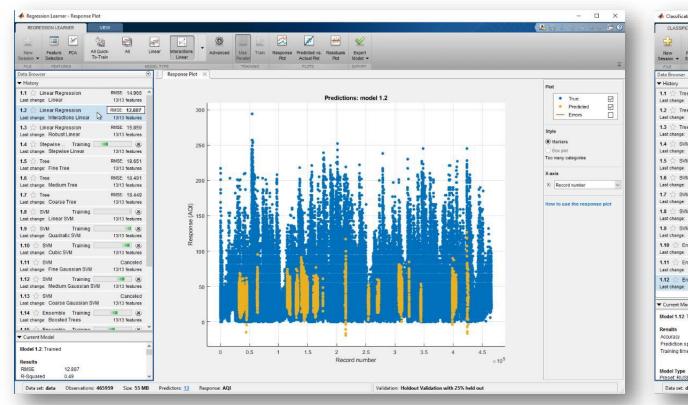


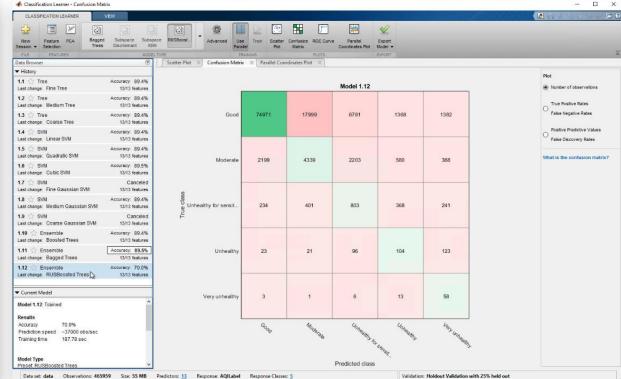
MATLAB EXPO 2018

Use apps for model exploration on a subset of data

Air Quality Index

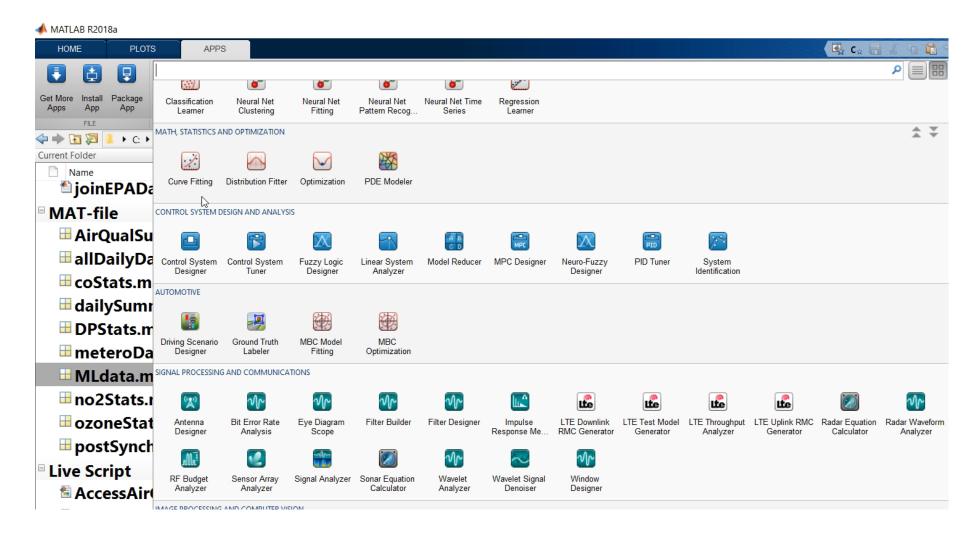
Air Quality Label

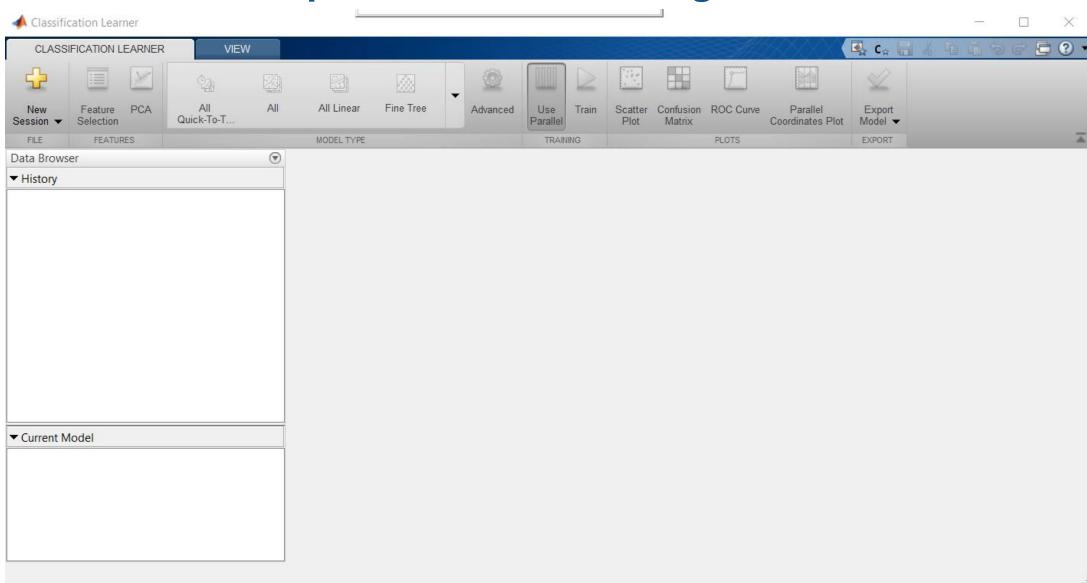


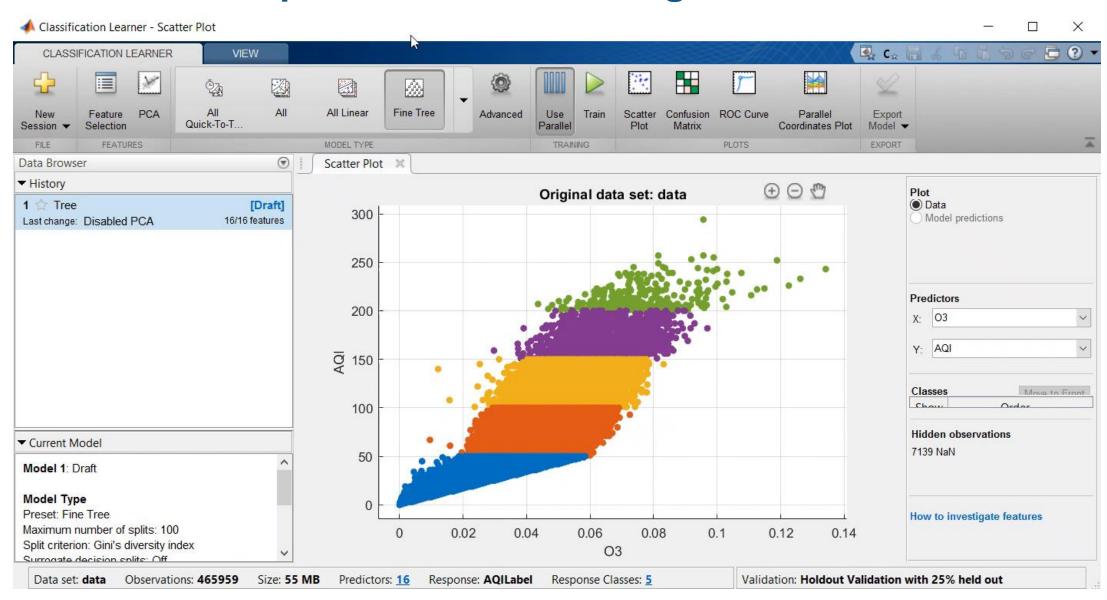


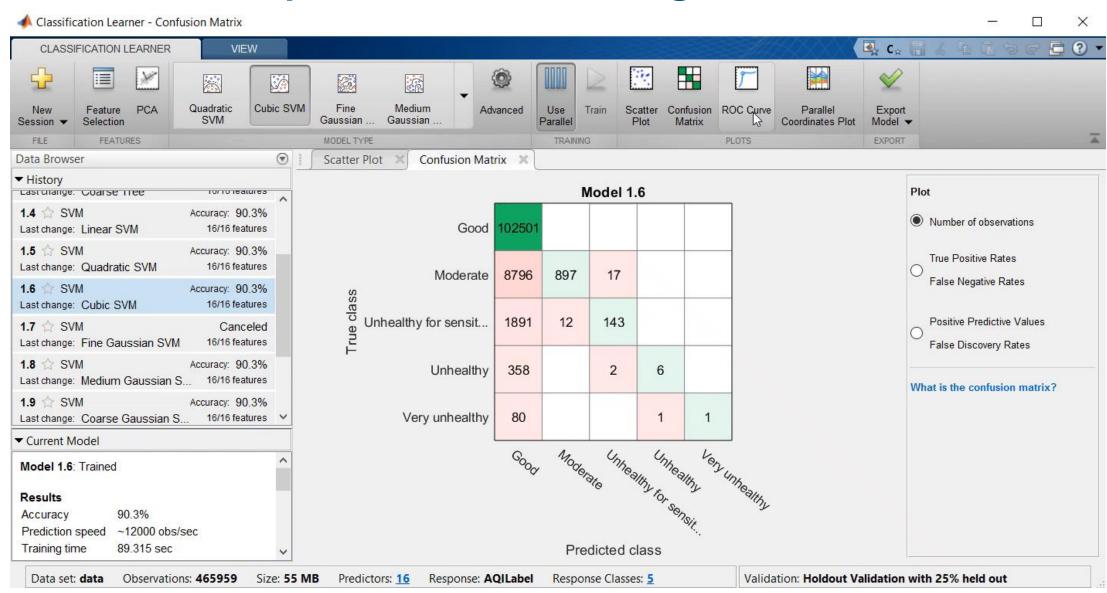
Regression Learner

Classification Learner









Scale up with tall machine learning models

- Linear Regression (fitlm)
- Logistic & Generalized Linear Regression (fitglm)
- Discriminant Analysis Classification (fitcdiscr)
- K-means Clustering (kmeans)
- Principal Component Analysis (pca)
- Partition for Cross Validation (cvpartition)
- Linear Support Vector Machine (SVM) Classification (fitclinear)
- Naïve Bayes Classification (fitchb)
- Random Forest Ensemble Classification (TreeBagger)
- Lasso Linear Regression (lasso)
- Linear Support Vector Machine (SVM) Regression (fitrlinear)
- Single Classification Decision Tree (fitctree)
- Linear SVM Classification with Random Kernel Expansion (fitckernel)
- Gaussian Kernel Regression (fitrkernel)

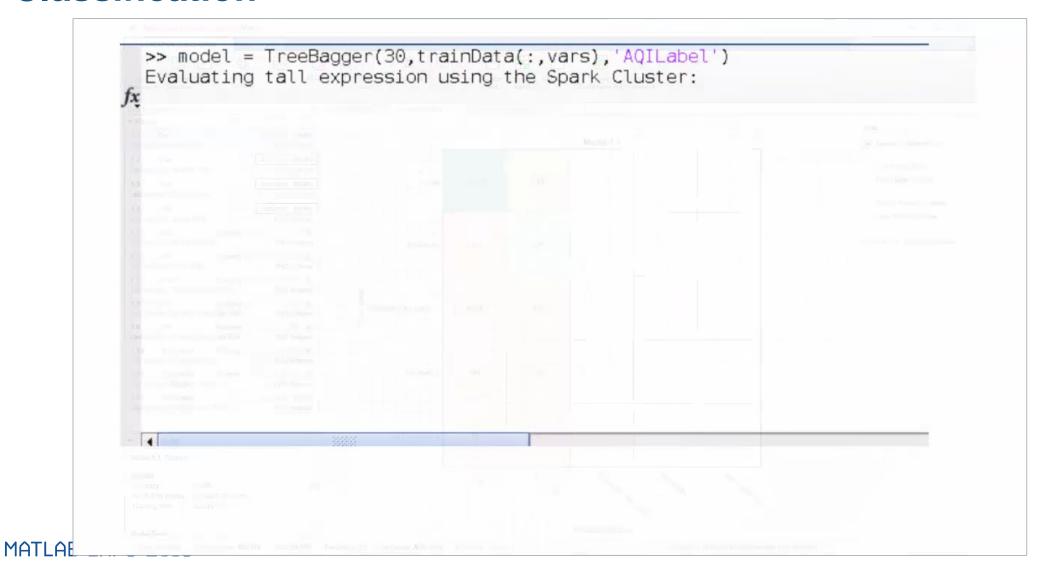
R2016b

R2017a

2010

R2017b

Training Machine Learning Model against Spark for Air Quality Classification



Train and validate with tall data for Air Quality Index Prediction

```
model = fitlm(dailyData(:,[5:11,13:16,3]))

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0 sec
```

model =

Compact linear regression model:

 $AQI \sim 1 + CO + SO2 + NO2 + T + P + WindDir + WindSpd + RH + YY + MM + DD$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
		-		
(Intercept)	389.51	13.969	27.884	9.9792e-171
CO	-3.049	0.12769	-23.878	8.2102e-126
S02	-0.023073	0.0042052	-5.4868	4.0985e-08
NO2	0.057154	0.0044742	12.774	2.3766e-37
T	0.36578	0.0022326	163.84	0
P	0.0017117	0.0002197	7.7913	6.6682e-15
WindDir	0.019722	0.00068229	28.906	2.6997e-183
WindSpd	-0.34815	0.016799	-20.725	2.6815e-95
RH	-0.24597	0.002423	-101.52	0
YY	-0.17682	0.0069258	-25.53	1.6608e-143
MM	-0.77294	0.011332	-68.209	0
DD	-0.013008	0.0042385	-3.0691	0.0021477

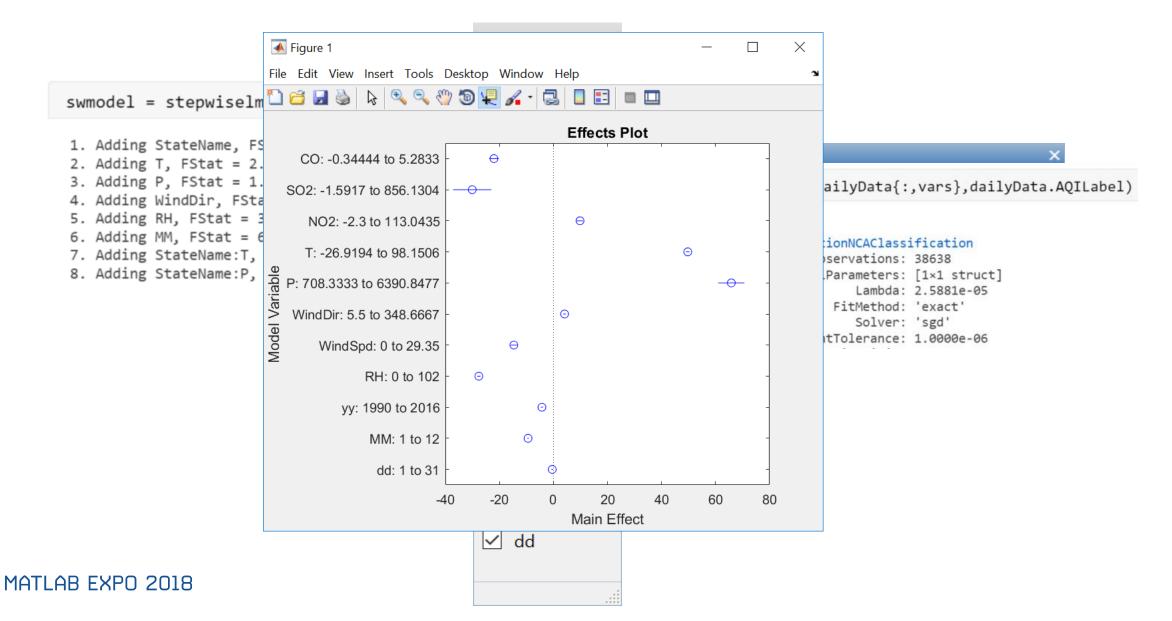
Number of observations: 175927, Error degrees of freedom: 175915

Root Mean Squared Error: 15.6

R-squared: 0.219, Adjusted R-Squared 0.219

F-statistic vs. constant model: 4.48e+03, p-value = 0

Select the most important features

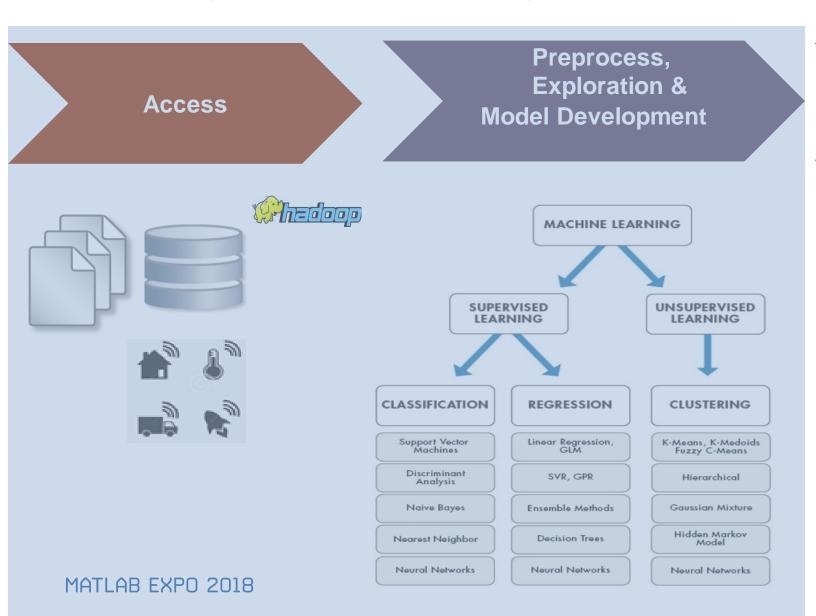


✓ Introduction to Tall Arrays

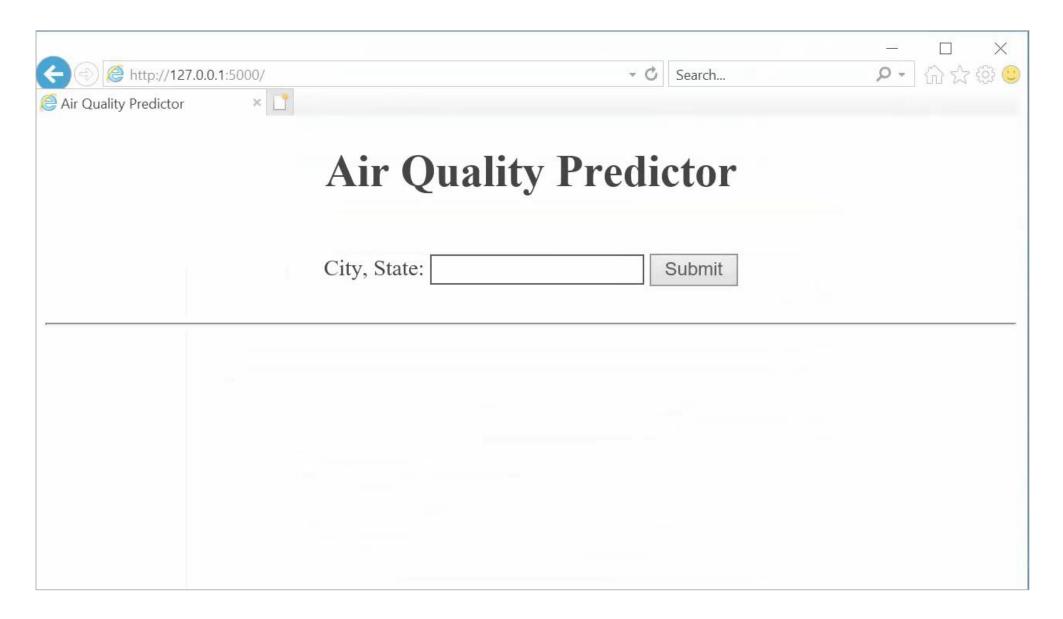
✓ Tall Arrays for Big Data Visualization and Preprocessing

✓ Machine Learning for Big Data Using Tall Arrays

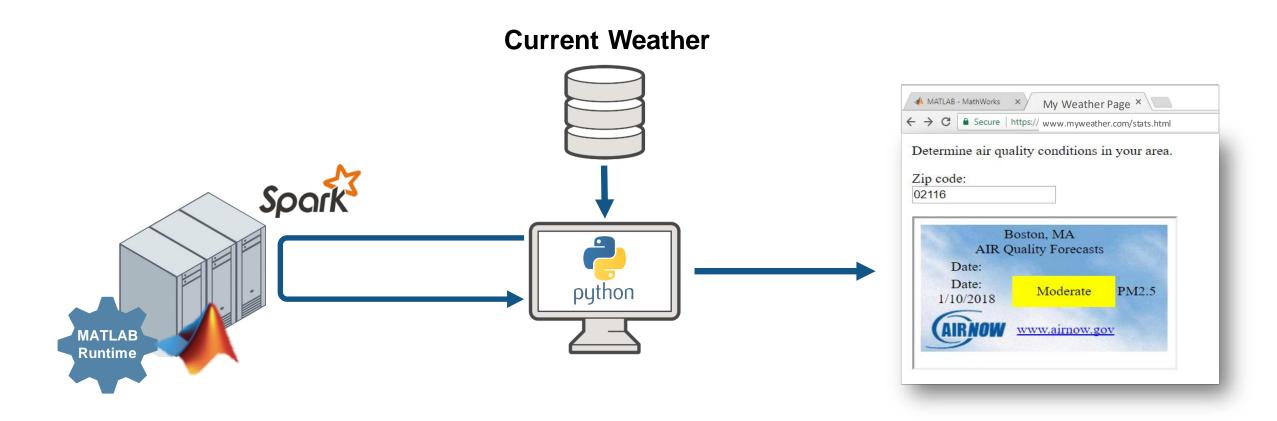
Building machine learning models with big data



Scale up & Integrate with Production Systems

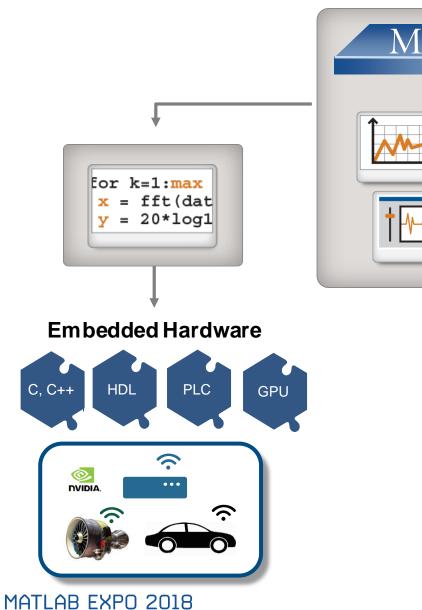


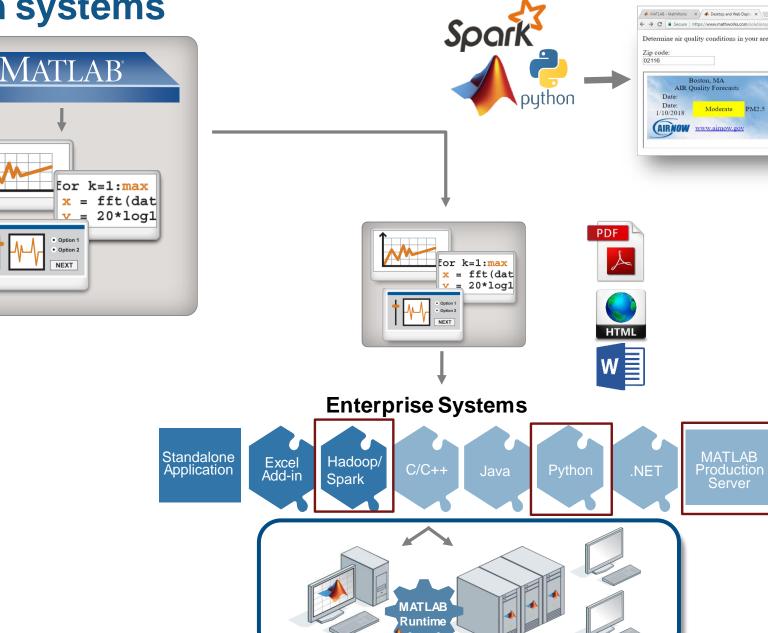
Predict air quality for given location



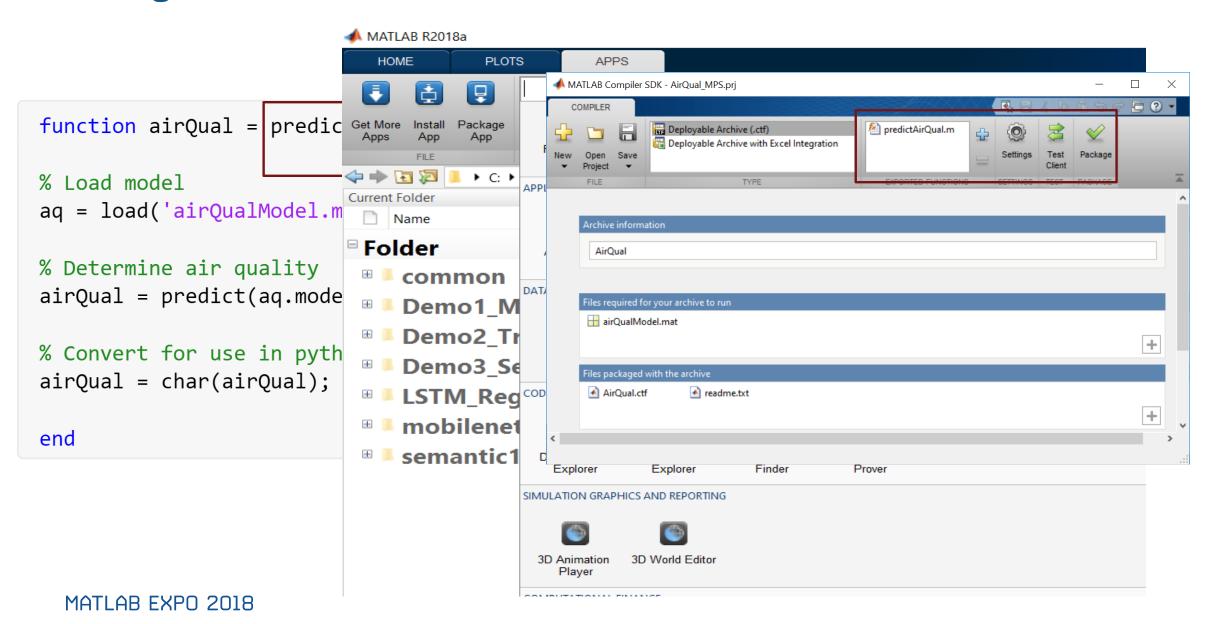
Use MATLAB model running on Spark in Python web framework

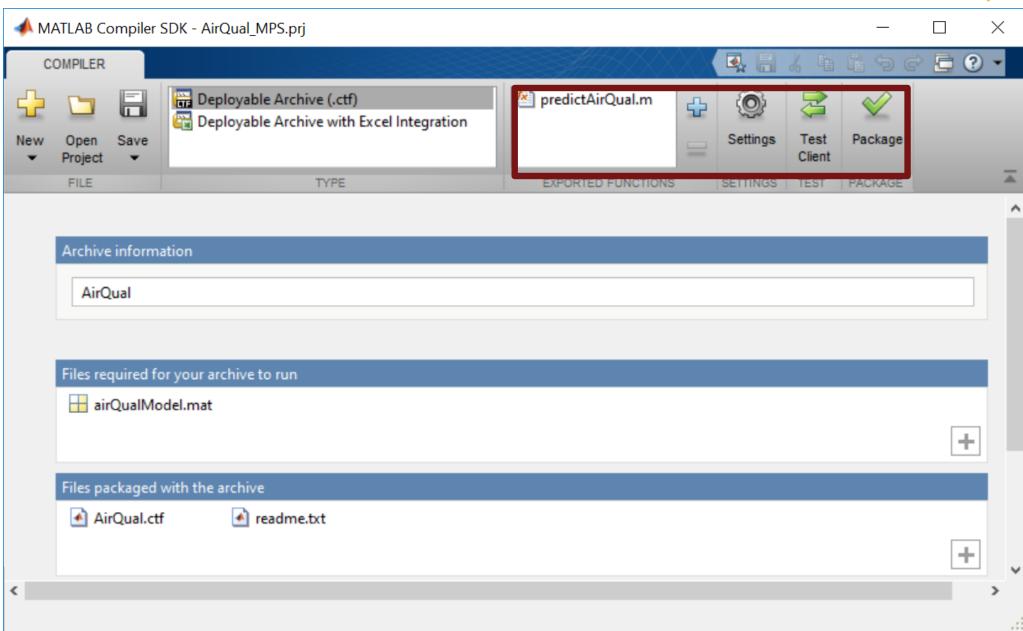
Integrate analytics with systems





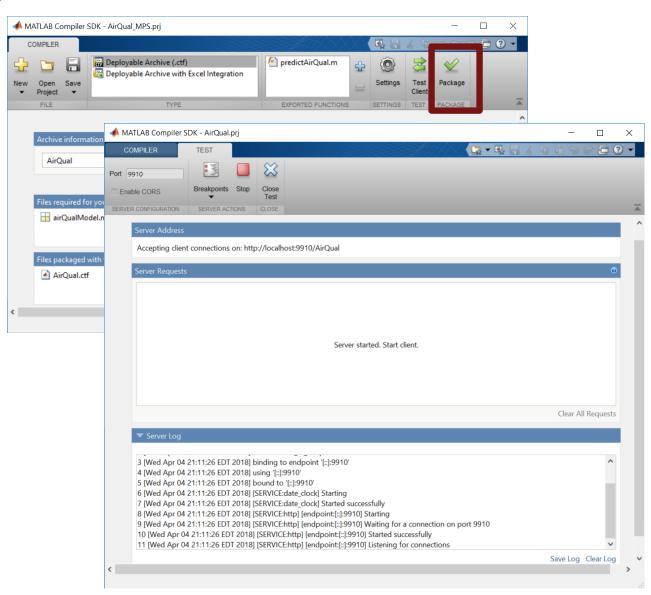
Package and test MATLAB code



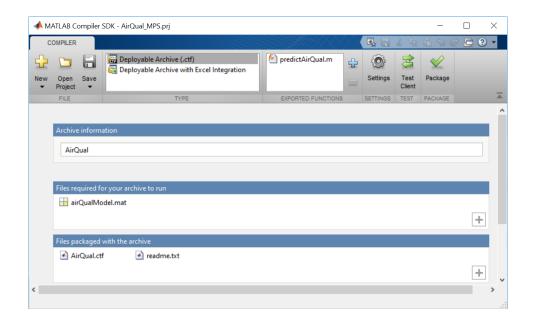


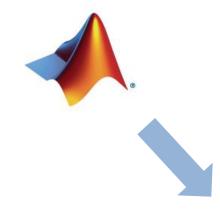
Package and test MATLAB code


```
runtests('testAirQual')
Running testAirQual
Done testAirQual
ans =
  1×4 TestResult array with properties:
    Name
    Passed
    Failed
    Incomplete
    Duration
    Details
Totals:
   4 Passed, 0 Failed, 0 Incomplete.
   0.0043759 seconds testing time.
```



Call MATLAB in production environment

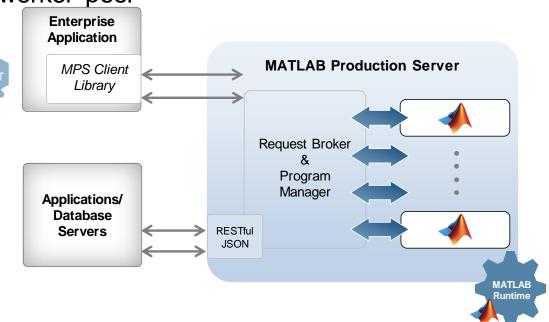





```
import matlab
from matlab.production_server import client
client_object = client.MWHttpClient('http://<HOST>:<PORT>')
air_qual = client_object.AirQual.predictAirQual(json_data)
```


MATLAB Production Server

- Server software
 - Manages packaged MATLAB programs and worker pool
- MATLAB Runtime libraries
 - Single server can use runtimes
 from different releases
- RESTful JSON interface
- Lightweight client libraries
 - C/C++, .NET, Python, and Java



MATLAB for Modeling and Deploying Big Data Applications

Access

Preprocess,
Exploration & Model

CLASSIFICATION

CLASSIFICATION

REGRESSION

CLASSIFICATION

REGRESSION

CLUSTERING

LONG CLUSTERING

REGRESSION

REGRESSION

LONG CLUSTERING

REGRESSION

LONG CLUSTERING

REGRESSION

LONG CLUSTERING

REGRESSION

REGRE

Scale up & Integrate with Production Systems

MATLAB Excel
.NET C/C++
Java .dll

- Distributed Data Storage
- Different Data Sources & Types

- Preprocessing and Visualizing Big Data
- Parallelizing Jobs and Scaling up Computations to Cluster

Enterprise level deployment

Easily Access Data however/wherever it is stored using **Datastore**

MATLAB EXPO 2018

Prototype and easily scale up algorithms to Big Data platforms using the familiar MATLAB Syntax with **Tall Arrays**

Seamless integration with Enterprise level systems using MATLAB Production Server

How do you get started?

- Try Tall Array Based Processing on Your Own Set of Big Data
- Refer to the example mentioned below to get started:

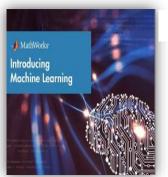
https://in.mathworks.com/help/matlab/examples/analyze-big-data-in-matlab-using-tall-

arrays.html

Other Resources

mathworks.com/big-data

mathworks.com/machine-learning



eBook

MathWorks Training Offerings

Machine Learning with MATLAB

INTERMEDIATE

This two-day course focuses on data analytics and machine learning techniques in MATLAB using functionality within Statistics and Machine Learning Toolbox™ and Neural Network Toolbox™. The course demonstrates the use of unsupervised learning to discover features in large data sets and supervised learning to build predictive models. Examples and exercises highlight techniques for visualization and evaluation of results. Topics include:

- Importing and organizing data
- Finding natural patterns in data
- Building predictive models
- Evaluating and improving the model

Prerequisites: *MATLAB Fundamentals*

Parallel Computing with MATLAB

INTERMEDIATE

This two-day course shows how to use Parallel Computing Toolbox™ to speed up existing code and scale up across multiple computers using MATLAB Distributed Computing Server™ (MDCS). Attendees who are working with long-running simulations, or large data sets, will benefit from the hands-on demonstrations and exercises in the course. Topics include:

- Parallel for-loops
- Offloading execution
- Working with clusters
- · Distributing and processing large data sets
- · GPU computing

Prerequisites: MATLAB Fundamentals

http://www.mathworks.com/services/training/

Speaker Details

Email: Alka.Nair@mathworks.in

LinkedIn: https://www.linkedin.com/in/alka-nair-

1820501a/

Contact MathWorks India

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

- Share your experience with MATLAB & Simulink on Social Media
 - Use #MATLABEXPO

Share your session feedback:

Please fill in your feedback for this session in the feedback form