MATLAB EXPO 2018

System modeling using Simulink and Simscape

Abhisek Roy Sruthi Geetha Veer Alakshendra

Multi-domain Systems

Common challenges

- 1. Multi-domain simulation
- 2. Capturing the system dynamics at desired complexity
- 3. Developing controls algorithm

Pointing System

Pointing System

Agenda

Understanding and capturing the behavior of a system

- Various approaches of modeling
- Example: DC motor
- Model the Pointing System
 - Modeling the mechanism
 - Sizing Actuation System
- Developing control strategy

Modeling a DC Motor

Model:

Problem: Model a DC motor with electrical and mechanical effects

Different Approaches for Modeling Dynamic Systems

What is Simulink?

The leading environment for modeling, simulating and implementing dynamic and embedded systems

- Block-diagram environment
- Model, simulate, and analyze multi-domain systems
- Accurately design, implement, and test complex systems for:
 - Communications
 - Control
 - Signal processing
 - Video and image processing
- Platform for Model-Based Design

Modeling a DC Motor in Simulink

Model:

How to model a DC Motor in Simulink?

Based on its equation:

V = K * w + i * R + L*(di / dt) T = Kt * i - b * w - J * (dw / dt) di / dt = 1 / L * (- R * i + V - K * w) dw / dt = 1 / J * (Kt * i - T - b * w) i = integral{ 1/L * (- R * i + V - K * w)} w = integral { 1/J * (Kt * i - T - b * w)}

Different Approaches for Modeling Dynamic Systems

Introduction to Simscape

Modeling a DC Motor Model: V+ V-Shaft DC_Mo Housing

Problem: Model a DC motor with electrical and mechanical effects

Solution: Use Simscape to model the electromechanical system as a physical network

DC Motor in Simscape

Agenda

- Understanding and capturing the behavior of a system
 - Various approaches of modeling
 - Example: DC motor

- Modeling the mechanism
- Sizing Actuation System
- Developing control strategy

Agenda

- Understanding and capturing the behavior of a system
 - Various approaches of modeling
 - Example: DC motor
- Model the Pointing System
 Modeling the mechanism
 - Sizing Actuation System
- Developing control strategy

Mechanism

- Simscape Multibody model advantages
 - Easier to read than equations
 - Quicker to create
 - More intuitive easier to explain to other engineers

Exercise: Double Pendulum

Import CAD Data Using Simscape Multibody Link

- Automatically create Simscape Multibody models from a CAD assembly
 - Converts mass and inertia to rigid bodies
 - Converts mate definitions to joints
 - Creates STEP files for use with Simscape Multibody visualization
- Directly connects SOLIDWORKS, PTC Creo® (Pro/ENGINEER®) and Inventor
- Free download from www.mathworks.com
 - Requires MATLAB

Simscape Multibody Link: Convert CAD Assembly to Simscape Mutibody

- Use Simscape Multibody Link plugin to export from CAD to XML
- Import XML file into Simscape Multibody (>> smimport)

Agenda

- Understanding and capturing the behavior of a system
 - Various approaches of modeling
 - Example: DC motor
- Model the Pointing System
 - Modeling the mechanism

Developing control strategy

Actuation

Agenda

- Understanding and capturing the behavior of a system
 - Various approaches of modeling
 - Example: DC motor
- Model the Pointing System
 - Modeling the mechanism
 - Sizing Actuation System

Actuation system with feedback

Call to action

- <u>Aileron Actuator Development with Model-Based Design</u>
- Modeling an Engine Cooling System

% Thank you