MATLAB EXPO 2018

Designing Efficient Power Electronics Systems Using Simulation

Vivek Raju & Naga Pemmaraju Application Engineering Control Design Automation

Power and Energy Applications

Challenges:

- How to size inductor, capacitor and understand the behaviour in Continuous and Discontinuous mode?
- How to determine power losses and simulate the thermal behaviour of the converter?
- How to design control algorithm based on time domain specification(Rise time, Overshoot, Settling time)?
- How to run power electronics in HIL simulations at 1MHz frequency?

What are we doing today?

DC-DC Sepic Converter Implementation

Fig4: DC/DC LED Lighting Board Block diagram with F28035

Lets explore interesting problem statements

How to size inductor, capacitor and understand the behaviour in Continuous and Discontinuous mode?

- How to determine power losses and simulate the thermal behaviour of the converter?
- How to design control algorithm based on time domain specification(Rise time, Overshoot, Settling time)?
- How to run power electronics in HIL simulations at 1MHz frequency?

Sizing inductor, capacitor and understand the behaviour in Continuous and Discontinuous mode.

Challenge

 Need an efficient process for electrical component sizing that minimizes overall size of the DC to DC converters

Solution

- Usage of simulation to design DC to DC converters
- Optimize component sizing using Simulation driven analysis

Sizing components and understand the behaviour in Continuous and Discontinuous model.

MathWorks[®]

Lets explore interesting problem statements

 How to size inductor, capacitor and understand the behaviour in Continuous and Discontinuous mode?

How to determine power losses and simulate the thermal behaviour of the converter?

- How to design control algorithm based on time domain specification(Rise time, Overshoot, Settling time)?
- How to run power electronics in HIL simulations at 1MHz frequency?

Parameterizing the MOSFET Switch from the datasheet

Device Blocks

Parameterizing the MOSFET Switch from the datasheet

Web Browser - DC_Motor_Demo_Script	- 🗆 – ×							-	- 0	×
DC_Motor_Demo_Script × +				(电话	ା ବ ଜ 🗗 🕐 s	earch Documentation	P	Eog In
 Control of the control of the control	/Detailed_DC_DC_Cor V	Simulink SIMULINK erter + De	Layout	 Preferences Set Path Parallel ENVIRONMENT C_DC_Converte 	s 🕹 Add-Ons	? Help ▼ F Temp_F •	Community Cequest Support Cequ		Value	I4 ♥ ■
 Open Open ID-VDS Characteristics Open Transfer Characteristics Open Dynamic Characteristics 							Charge_char controller_choice Data001 Data002 Data003 Data004 Data005		1x1 struct 1 7x2 double 7x2 double 7x2 double 11x2 double 11x2 double	^
5. Nonlinear Model of DC to DC Converter Close Demo Published with MATLAB® R2017b					<i>∑</i> ₂		Data006 DC_Motor_Control DC_Motor_Control DCMotor_check_in gate_char h1_elec_mosfet i Id_mat_datasheet Id_mat_datasheet Id_mat_datasheet Id_mat_datasheet Id_mat_datasheet Id_mat_datasheet Id_mat_datasheet	ol_2012b_HomeDir nitial_config t1 t2 t3 t4	11x2 double 'C:\Users\viva 'yes' 10x2 double 1x1 Figure 3 1x1 struct 101x3 double [0.2053;18.8: [0.6160;20.1: [0.6160;20.1: 11x1 double 11x1 double	e 9 2
							Id_mat_datasheet Id_mat_datasheet igbt_Losses_simid j leg legend_info logsout mdl	5 6)g	1x1 double 11x1 double 1x1 Node 3 1x2 cell 1x4 cell [] 'scdboostcou	n. ~

4-20 DM

Determine power losses and simulate the thermal behaviour of the converter.

MathWorks[®]

Lets explore interesting problem statements

- How to size inductor, capacitor and understand the behaviour in Continuous and Discontinuous mode?
- How to determine power losses and simulate the thermal behaviour of the converter?
- How to design control algorithm based on time domain specification(Rise time, Overshoot, Settling time)?
- How to run power electronics in HIL simulations at 1MHz frequency?

Design and tune the control logic for the power electronics converter.

16

Design and tune the control logic for the power electronics converter.

T 0 500

1 7 0 0 1 7

17

Implementation of the power electronic controls on an Embedded Processor

Lets explore interesting problem statements

- How to size inductor, capacitor and understand the behaviour in Continuous and Discontinuous mode.
- How to determine power losses and simulate the thermal behaviour of the converter.
- How to design control algorithm based on time domain specification(Rise time, Overshoot, Settling time)

How to run power electronics in HIL simulations at 1MHz frequency?

Why Hardware-in-Loop Simulations (HIL)?

What is HIL

Demo

Power Electronics and Motor Control - Switching

2 Ways to simulate power electronics

- Average
 - Easy to implement in real time
 - Ignores dynamics of switching devices
 - Good enough for some types of analysis
- Switching
 - Captures switching events
 - Requires simulation 100 times faster than switching frequency

CPU vs FPGA Simulations

2 Ways to simulate power electronics

- CPU
 - Cheaper hardware
 - Can run continuous domain simulation
 - Run any code gen compatible block
- FPGA
 - Multiple orders of magnitude faster
 - Requires discrete domain simulation
 - Uses single precision floating point values

Real-Time Simulation and Testing

Complete Solution

Simulink Real-Time

MathWorks instrumentation

MathWorks Kernel

Toolboxes

Simscape/SimMechanics/Sim PowerSystems

HDL Coder

Speedgoat real-time target machines

Speedgoat I/O Modules and protocol support

Speedgoat driver library

FPGA-based solutions

System Level Model of a Motor and Inverter in Simulink

Field-Oriented Velocity Control Test Bench

HIL Simulation Using Simulink Real-Time and Speedgoat Target Hardware

Use of HDL Coder to Generate Floating-Point HDL From the Simulink Model to Achieve 1 MHz Time-Steps

High Level Process for Deploying Model to FPGA

- 1. Create high level subsystem for defining I/O
- 2. Convert model to discrete time
- 3. Convert all double precision signals to single precision signals
- 4. Use HDL workflow advisor to setup model settings
- 5. Use HDL workflow advisor to use all HDL compatible blocks
- 6. Use HDL workflow advisor to create Xilinx Vivado project and perform synthesis
- 7. Deploy model to the Speedgoat real-time machine.

Simulink Programmable FPGA I/O modules Optimized for Power Electronics HIL and RCP

The IO331-335 I/O modules are optimized for HIL simulation of real power stages. The card combines fast, low-latency analog and digital I/O capabilities, and is optimized for use with HDL Coder Workflow Advisor from MathWorks.

Analog connectivity: 16 x 5 MHz ADC, +/-10V, ENOB > 13-bit at 5 MHz 16 x 2 MHz DAC, +/-10V, settling time <1us

Multi-Gigabit Transceivers: 4 x MGT for inter-board communication Enables scalability - I/O and computational resources

Selectable rear plug-ins add: Digital TTL/RS422 I/O support for PWM / Encoder Front SFP cages to access MGT at the out side of the enclosure

Simulink Real-Time: From desktop simulation to real-time

Creation of real-time applications from Simulink models and loading them onto dedicated target computer hardware in 3 automated steps:

1 Code Generation (2) Compile & Link (3) Download & Ready to Run

Simulink Real-Time: Connect to your physical system

- Support for a broad range of I/O types and communication protocols
- Easy drag & drop and configuration within a Simulink model

Call to Action

- Webinar
- Power electronics e-booklet
- Trail license

Training

Q&A

Speaker Details

Naga Pemmaraju

Email: Naga.Pemmaraju@mathworks.in

LinkedIn: <u>https://www.linkedin.com/in/n-</u> pemmaraju/

Speaker Details

Vivek Raju

Email: Vivek.Raju@mathworks.in

LinkedIn:<u>https://www.linkedin.com/in/vivekraju87/</u>

• Share your session feedback:

Please fill in your feedback for this session in the feedback form

Contact MathWorks India

Products/Training Enquiry Booth Call: 080-6632-6000

Email: info@mathworks.in

Thank you