MATLAB EXPO 2018

Demystifying Deep Learning

Dr. Amod Anandkumar Senior Team Lead – Signal Processing & Communications

What is Deep Learning?

MATLAB EXPO 2018

Deep learning is a type of machine learning in which a model learns to perform classification tasks directly from images, text, or sound.

Deep learning is usually implemented using a **neural network**.

The term "deep" refers to the **number of layers** in the network—the more layers, the deeper the network.

Deep Learning is Versatile

MATLAB Examples Available Here

Many Network Architectures for Deep Learning

Convolutional Neural Networks

Deep Learning Inference in 4 Lines of Code

```
>> net = alexnet;
```

```
>> I = imread('peacock.jpg')
```

```
>> I1 = imresize(I,[227 227]);
```

```
>> classify(net,I1)
```

ans =

```
categorical
```

peacock

What is Training?

During training, neural network architectures learn features directly from the data without the need for manual feature extraction

What Happens During Training? AlexNet Example

Layer weights are learned during training

Visualize Network Weights During Training

AlexNet Example

Trained Network

 $\rightarrow Flower \\ \rightarrow Cup \\ \rightarrow Car \\ \rightarrow Tree$

Labels

Visualization Technique – Deep Dream

```
deepDreamImage(...
    net, 'fc5', channel,
    'NumIterations', 50, ...
    'PyramidLevels', 4,...
    'PyramidScale', 1.25);
```

Synthesizes images that strongly activate a channel in a particular layer

Example Available Here

Visualize Features Learned During Training AlexNet Example

Category: Arctic Fox Epoch 17

Sample Training Data

Features Learned by Network

Visualize Features Learned During Training AlexNet Example

Category: Flamingo Epoch 10

Sample Training Data

Features Learned by Network

Deep Learning Challenges

Data

- Handling large amounts of data
- Labeling thousands of images & videos

Training and Testing Deep Neural Networks

- Accessing reference models from research
- Optimizing hyperparameters
- Training takes hours-days

Rapid and Optimized Deployment

- Desktop, web, cloud, and embedded hardware

Not a deep learning expert

Available Here

Example – Semantic Segmentation

- Classify pixels into 11 classes
 - Sky, Building, Pole, Road, Pavement, Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist
- CamVid dataset

Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in video: A high-definition ground truth database." Pattern Recognition Letters Vol 30, Issue 2, 2009, pp 88-97. 15

Label Images Using Image Labeler App

MathWorks[®]

Accelerate Labeling With Automation Algorithms

MATLAB EXPO 2018

Learn More

Perform Bootstrapping to Label Large Datasets

Available Here

Example – Semantic Segmentation

Search Help

Semantic Segmentation Using Deep Learning

This example shows how to train a semantic segmentation network using deep learning.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is segmented by class. Applications for semantic segmentation include road segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see Semantic Segmentation Basics.

To illustrate the training procedure, this example trains SegNet [1], one type of convolutional neural network (CNN) designed for semantic image segmentation. Other types networks for semantic segmentation include fully convolutional networks (FCN) and U-Net. The training procedure shown here can be applied to those networks too.

Q

This example uses the CamVid dataset [2] from the University of Cambridge for training. This dataset is a collection of images containing street-level views obtained while driving. The dataset provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

Learn more about

Setup

This example creates the SegNet network with weights initialized from the VGG-16 network. To get VGG-16, install Neural Network Toolbox[™] Model for VGG-16 Network. After installation is complete, run the following code to verify that the installation is correct.

vgg16();

MATLAB EXPO 2018

Access Large Sets of Images

Handle Large Sets of Images

Handle Big Image Collections without Big Changes

MathWorks[®]

Import Pre-Trained Models and Network Architectures

Pretrained Models

- alexnet
- vgg16
- vgg19
- googlenet
- inceptionv3
- resnet50
- resnet101
- inceptionresnetv2
- squeezenet

Import Models from Frameworks

 Caffe Model Importer (including Caffe Model Zoo)

- importCaffeLayers
- importCaffeNetwork
- TensorFlow-Keras Model Importer
 - importKerasLayers
- **KERAS IMPORTER**

Importer for TensorFlow-Keras Models

- importKerasNetwork

Available Here

Example – Semantic Segmentation

Search Help

Semantic Segmentation Using Deep Learning

This example shows how to train a semantic segmentation network using deep learning.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is segmented by class. Applications for semantic segmentation include road segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see Semantic Segmentation Basics.

To illustrate the training procedure, this example trains SegNet [1], one type of convolutional neural network (CNN) designed for semantic image segmentation. Other types networks for semantic segmentation include fully convolutional networks (FCN) and U-Net. The training procedure shown here can be applied to those networks too.

Q

This example uses the CamVid dataset [2] from the University of Cambridge for training. This dataset is a collection of images containing street-level views obtained while driving. The dataset provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

Learn more about

Setup

This example creates the SegNet network with weights initialized from the VGG-16 network. To get VGG-16, install Neural Network Toolbox[™] Model for VGG-16 Network. After installation is complete, run the following code to verify that the installation is correct.

vgg16();

Augment Training Images

Tune Hyperparameters to Improve Training

Many hyperparameters

 depth, layers, solver options, learning rates, regularization,

Techniques

. . .

- Parameter sweep
- Bayesian optimization

Use parfeval to Train Multiple Deep Learning Networks

Use parfeval for a parameter sweep on the depth of the network architecture. Deep Learning training often takes hours or days, and

Open Script

Deep Learning Using Bayesian Optimization

Apply Bayesian optimization to deep learning and find optimal network parameters and training options for convolutional neural networks.

Open Live Script

Training Performance

MATLAB EXPO 2018

NVIDIA Tesla V100 32GB

The Fastest and Most Productive GPU for AI and HPC

Core	5120 CUDA cores, 640 Tensor cores
Compute	7.8 TF DP · 15.7 TF SP · 125 TF DL
Memory	HBM2: 900 GB/s · 32 GB/16 GB
Interconnect	NVLink (up to 300 GB/s) + PCle Gen3 (up to 32 GB/s)

Visit NVIDIA booth to learn more

Deep Learning on CPU, GPU, Multi-GPU & Clusters

Single GPU

Single CPU, Multiple GPUs

HOW TO TARGET?

Multi-GPU Performance Scaling

Ease of scaling

MATLAB "transparently"

scales to multiple GPUs

Runs on Windows!

Examples to Learn More

Available Here

Example – Semantic Segmentation

Search Help

Semantic Segmentation Using Deep Learning

This example shows how to train a semantic segmentation network using deep learning.

A semantic segmentation network classifies every pixel in an image, resulting in an image that is segmented by class. Applications for semantic segmentation include road segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see Semantic Segmentation Basics.

To illustrate the training procedure, this example trains SegNet [1], one type of convolutional neural network (CNN) designed for semantic image segmentation. Other types networks for semantic segmentation include fully convolutional networks (FCN) and U-Net. The training procedure shown here can be applied to those networks too.

Q

This example uses the CamVid dataset [2] from the University of Cambridge for training. This dataset is a collection of images containing street-level views obtained while driving. The dataset provides pixel-level labels for 32 semantic classes including car, pedestrian, and road.

Learn more about

Setup

This example creates the SegNet network with weights initialized from the VGG-16 network. To get VGG-16, install Neural Network Toolbox[™] Model for VGG-16 Network. After installation is complete, run the following code to verify that the installation is correct.

vgg16();

MATLAB EXPO 2018

Accelerate Using GPU Coder

Running in MATLAB

Generated Code from GPU Coder

Prediction Performance: Fast with GPU Coder

Deploying Deep Learning Application

Next Session

Deploying Deep Neural Networks to Embedded GPUs and CPUs 15:30–16:15

Designing and deploying deep learning and computer vision applications to embedded CPU and GPU platforms is challenging because of resource constraints inherent in embedded devices. A MATLAB[®] based workflow facilitates the design of these applications, and automatically generated C or CUDA[®] code can be deployed on boards like the Jetson TX2 and DRIVE[™] PX to achieve very fast inference.

The presentation illustrates how MATLAB supports all major phases of this workflow. Starting with algorithm design, the algorithm may employ deep neural networks augmented with traditional computer vision techniques and can be tested and verified within MATLAB. Next, these networks are trained using GPU and parallel computing support for MATLAB either on the desktop, cluster, or the cloud. Finally, GPU Coder[™] generates portable and optimized C/C++ and/or CUDA[®] code from the MATLAB algorithm, which is then cross-compiled and deployed to CPUs and/or a Tegra[®] board. Benchmarks show that performance of the auto-generated CUDA code is ~2.5x faster than MXNet, ~5x faster than Caffe2, ~7x faster than TensorFlow[®], and on par with TensorRT[™] implementation.

Rishu Gupta, Ph.D., Senior Application Engineer, MathWorks India

AlexN

Addressing Deep Learning Challenges

✓ Perform deep learning without being an expert

✓ Automate ground truth labeling

✓ Create and visualize models with just a few lines of code

✓ Seamless scale training to GPUs, clusters and cloud

✓ Integrate & deploy deep learning in a single workflow

Inception-v3

Pretrained Model

Framework Improvements

MathWorks[®]

- Architectures / layers
 - Regression LSTMs
 - Bidirectional LSTMs
 - Multi-spectral images
 - Custom layer validation
- Data pre-processing
 - Custom Mini-Batch Datastores

- Performance
 - CPU performance optimizations
 - Optimizations for zero learning-rate
- Network training
 - ADAM & RMSProp optimizers
 - Gradient clipping
 - Multi-GPU DAG network training
 - DAG network activations

Deep Learning Network Analyzer

MATLAB EXPO 2018

Add-Ons

Creating Custom Architectures

Create the layers

MATLAB provides a simple programmatic interface to create layers and form a network

- addLayers
- removeLayers
- connectLayers
- disconnectLayers

... but are all these layers compatible?

```
previous = reluLayer( 'Name', 'input to inception' );
oneByOne = [
    convolution2dLayer( 1, 64, 'Stride', 3, 'Name', '1x1' )
    reluLayer( 'Name', 'relu 1x1')
    1;
threeByThree = [
    convolution2dLayer( 1, 96, 'Name', '3x3 reduce' )
    reluLayer( 'Name', 'relu 3x3 reduce')
    convolution2dLayer( 3, 128, 'Stride', 3, 'Name', '3x3' )
    reluLayer( 'Name', 'relu 3x3')
    ];
fivebyFive = [
    convolution2dLayer( 1, 16, 'Name', '5x5 reduce' )
    reluLayer( 'Name', 'relu 5x5 reduce')
    convolution2dLayer( 5, 32, 'Stride', 3, 'Padding', 0, 'Name', '5x5' )
    reluLayer( 'Name', 'relu 5x5')
    1;
threeMaxPool = [
    maxPooling2dLayer( 3, 'Stride', 3, 'Name', '3x3 pool' )
    reluLayer( 'Name', 'relu 3x3_pool')
    convolution2dLayer( 1, 32, 'Name', '1x1 after pool' )
    reluLayer( 'Name', 'relu 1x1 after pool')
    1;
```

concat = depthConcatenationLayer(4, 'Name', 'concat');

	ISSU	JES					
• 2x28 g		Layers Message					
Ť	0	concat Input size mismatch. Size of input to this layer is	different from the expect	ed input size.		~	1
very fir							,
	ANA	LYSIS RESULT					G
• 3x3 pool		Name	Туре	Activations	Learnables		
• relu 1x1 • relu 3x • relu 5x • relu 3x	11	relu 5x5_reduce ReLU	KeLU	24×36×16	-		-
	12	5x5 32 5x5x16 convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	7×11×32	5×5×16×32 1×1×32	Weights Bias	6
3x3 5x5 1x1 aft	13	relu 5x5 ReLU	ReLU	7×11×32	-		
• relu 3x3 • relu 5x5 • relu 1x	14	3x3 pool 3x3 max pooling with stride [3 3] and padding [0 0 0 0]	Max Pooling	8×12×20	-		
• O concat	15	relu 3x3_pool ReLU	ReLU	8×12×20	-		
max p	16	1x1 after pool 32 1x1x20 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	8×12×32	1×1×20×32 1×1×32	Weights Bias	3
· · · · · · · · · · · · · · · · · · ·	17	relu 1x1 after pool ReLU	ReLU	8×12×32	-		
• full	18	concat Depth concatenation of 4 inputs	Depth concatenation	Error	-		
• soft	19	max_pool 2x2 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	Error	-		
• classifi	20	full 10 fully connected layer	Fully Connected	1×1×1	Error 10×1	Weights Bias	5
	21	soft softmax	Softmax	1×1×1	-		
	22	classification crossentropyex	Classification Output	-	-		

• 2×28 g		ISSUES										
			Layers	Message								
T I I		0	concat Input size mismatch. Size of input to this layer is different from the expected input size.									
		very	fir									-
		<u>/</u> `			AN	ALYSIS RES	ULT					•
	1x1	• 3x3 re	5x5 re	3x3 pool		Name		Туре	Activations	Learnables		Ť
	• relu 1x1	e relu 3x	e relu 5x	• relu 3x	1	2x28 grey 28x40x1 im	ages with 'zerocenter' normalization	Image Input	28×40×1	-		1
		• 3x3	5x5	• 1×1 aft	2	very first of 20 5x5x1 c	conv onvolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×36×20	5×5×1×20 1×1×20	Weights Bias	ŕ
	•	•	•		3	input to in ReLU	ception	ReLU	24×36×20	-		
		relu 3x3	• relu 5x5	🔸 relu 1x	4	1x1 64 1x1x20	convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×12×64	1×1×20×64 1×1×64	Weights Bias	-
		0.	oncat		5	relu 1x1 ReLU		ReLU	3 x 12 x 6	4		
		• max	_p		6	3x3 reduce 96 1x1x20	e convolutions with stride [1 1] and padding [0 0 0 0]	Convolution		,×1×20×96 1×1×96	Weights Bias	-
		£.11			7	relu 3x3_ ReLU	reduce	ReLU	24:	-		
					8	3x3 128 3x3x96	convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×1	3×3×96×128 1×1×128	Weights Bias	i -
		• soft			9	relu 3x3 _{ReLU}		ReLU	8×12×128	-		
• classifi		10	5x5 reduce 16 1x1x20	e convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×36×16	1×1×20×16 1×1×16	Weights Bias	1			
					11	relu 5x5_ ReLU	reduce	ReLU	24×36×16	-		
					12	5x5		Convolution	7×11×32	5×5×16×32	Weights	-

	ISS	UES						
• 2x28 g		Layers	Message					
Ţ	0	concat	Input size mismatch. Size of input to this layer	is different from the exp	pected input size.		× 4	*
• very fir								
t								
input t								-
• 1x1 • 3x3 re • 5x5 re • 3x3 pool	AN	ANALYSIS RESULT						
+ + + +	-	Name		Туре	Activations	Learnables		
• relu 1x1 • relu 3x • relu 5x • relu 3x	1	2x28 gre 28x40x1 ir	y nages with 'zerocenter' normalization	Image Input	28×40×1	-		÷
● 3x3 ● 5x5 ● 1x1 aft	2	very first 20 5x5x1 c	conv convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×36×20	5×5×1×20 1×1×20	Weights Bias	
	3	input to in ReLU	nception	ReLU	24×36×20	-		
• relu 3x3 • relu 5x5 • relu 1x	4	1x1 64 1x1x20	convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×12×64	1×1×20×64 1×1×64	Weights Bias	
1 concat	5	relu 1x1 ReLU		ReLU	8×12×64	-		
max_p	6	3x3 redu 96 1x1x20	ce convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24	1×1×20×96 1×1×96	Weights Bias	
5.11	7	relu 3x3_ ReLU	reduce	ReLU	24:	-		
	8	3x3 128 3x3x9	6 convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×	3×3×96×128 1×1×128	Weights Bias	
• soft	9	relu 3x3 ReLU		ReLU	8 x 12 x 1	28		
classifi	10	5x5 redu 16 1x1x20	ce convolutions with stride [1 1] and padding [0 0 0 0]	Convolution		*20×16 1×1×16	Weights Bias	
	11	relu 5x5_ ReLU	reduce	ReLU	24×36×16	-		
	12	5x5		Convolution	7×11×32	5×5×16×32	Weights -	Ŧ

		ISSU	IES					
	• 2x28 g	l	Layers	Message				
	•	0	concat	Input size mismatch. Size of input to this layer	is different from the expect	ted input size.		¥ 1
	• very fir							
• 1x1 • 3x3 r	e 5x5 re 3x3 pool	ANA	LYSIS RES	ULT				0
+ +		•	Name		Туре	Activations	Learnables	
• relu 1x1 • relu 3	3x • relu 5x • relu 3x	8	3x3 128 3x3x9	6 convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×12×128	3×3×96×128 1×1×128	Weights Bias
• 3x3	• 5x5 • 1x1 aft	9	relu 3x3 ReLU		ReLU	8×12×128	-	
relu 5x5 relu 1x	10 5x5 reduce 16 1x1x20 convolutions with stride [1 1] and padding [0 0 0 0]			Convolution	24×36×16	1×1×20×16 1×1×16	Weights Bias	
		11	relu 5x5_ ReLU	reduce	ReLU	24×36×16	-	
	♥¶ concat	12	5x5 32 5x5x16	convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	7×11×32	5×5×16×32 1×32	Weights Bias
	• max_p	13	relu 5x5 ReLU		ReLU 7	x 11 x 3	2	
	full	14	3x3 pool 3x3 max p	ooling with stride [3 3] and padding [0 0 0 0]	Max Pooling	8×12	-	
		15	relu 3x3_ ReLU	pool	ReLU	8×1	-	
	• SOIL	16	1x1 after 32 1x1x20	pool convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	8×	1×1×20×32 1×1×32	Weights Bias
	• classifi	17	relu 1x1 a ReLU	after pool	ReLU	8×12×32	-	
		18	Conca Depth con	t catenation of 4 inputs	Depth concatenation	Error	-	
		19	max poo	1	Max Pooling	Error	-	

Create the layers

```
previous = reluLayer( 'Name', 'input to inception' );
oneByOne = [
    convolution2dLayer( 1, 64, 'Stride', 3, 'Name', '1x1' )
    reluLayer( 'Name', 'relu 1x1')
    ];
threeByThree = [
    convolution2dLayer( 1, 96, 'Name', '3x3 reduce' )
    reluLayer( 'Name', 'relu 3x3 reduce')
    convolution2dLayer( 3, 128, 'Stride', 3, 'Name', '3x3' )
    reluLayer( 'Name', 'relu 3x3')
    ];
fivebyFive = [
    convolution2dLayer( 1, 16, 'Name', '5x5 reduce' )
    reluLayer( 'Name', 'relu 5x5 reduce')
    convolution2dLayer( 5, 32, 'Stride', 3, 'Padding', 1, 'Name', '5x5' )
    reluLayer( 'Name', 'relu 5x5')
                                                                        Change the padding
    ];
threeMaxPool = [
                                                                        from zero to one
    maxPooling2dLayer( 3, 'Stride', 3, 'Name', '3 pol' )
    reluLayer( 'Name', 'relu 3x3 pool')
    convolution2dLayer( 1, 32, 'Name', '1x1 after pool' )
    reluLayer( 'Name', 'relu 1x1 after pool')
    ];
concat = depthConcatenationLayer( 4, 'Name', 'concat' );
```

• 1x1

🖕 relu 1x1

Analysis date: 05-Jan-2018 17:23:00

2x28 g...

• very fir...

🙏 input t...

🔵 5x5 re...

🖕 relu 5x...

🖕 5x5

🖕 relu 5x5

🔰 3x3 pool

🖕 relu 3x...

• 1x1 aft...

🤙 relu 1x...

€ 3x3 re...

🖕 relu 3x...

🖕 3x3

🖕 relu 3x3

concat

• max_p...

🖕 full

🔹 soft

olassifi...

			layers	warnings	errors
ANA	ALYSIS RESULT				6
	Name	Туре	Activations	Learnables	
1	2x28 grey 28x40x1 images with 'zerocenter' normalization	Image Input	28×40×1	-	
2	very first conv 20 5x5x1 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×36×20	5×5×1×20 1×1×20	Weights Bias
3	input to inception ReLU	ReLU	24×36×20	-	
4	1x1 64 1x1x20 convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×12×64	1×1×20×64 1×1×64	Weights Bias
5	relu 1x1 ReLU	ReLU	8×12×64	-	
6	3x3 reduce 96 1x1x20 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×36×96	1×1×20×96 1×1×96	Weights Bias
7	relu 3x3_reduce ReLU	ReLU	24×36×96	-	
8	3x3 128 3x3x96 convolutions with stride [3 3] and padding [0 0 0 0]	Convolution	8×12×128	3×3×96×128 1×1×128	Weights Bias
9	relu 3x3 ReLU	ReLU	8×12×128	-	
10	5x5 reduce 16 1x1x20 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×36×16	1×1×20×16 1×1×16	Weights Bias
11	relu 5x5_reduce ReLU	ReLU	24×36×16	-	
12	5x5 32 5x5x16 convolutions with stride [3 3] and padding [1 1 1 1]	Convolution	8×12×32	5×5×16×32 1×1×32	Weights Bias
13	relu 5x5 ReLU	ReLU	8×12×32	-	
14	3x3 pool 3x3 max pooling with stride [3 3] and padding [0 0 0 0]	Max Pooling	8×12×20	-	
15	relu 3x3_pool ReLU	ReLU	8×12×20	-	
16	1x1 after pool 32 1x1x20 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	8×12×32	1×1×20×32 1×1×32	Weights Bias

0 🔺

22 🗢

0 🕕

Call to Action – Deep Learning Onramp Free Introductory Course

Deep Learning Onramp

This free self-paced course provides an interactive introduction to practical deep learning. It focuses on using MATLAB® to apply deep learning methods to perform image recognition. The course consists of hands-on exercises and short videos. In the exercises, you will enter commands in an online version of MATLAB and receive contextual feedback that will help you correct common mistakes. Topics include:

- · Convolutional neural networks
- Preprocessing images
- · Using pretrained networks
- Transfer learning
- Evaluating network performance

Available Here

MATLAB Deep Learning Framework

- Manage large image sets
- Automate image labeling
- Easy access to models
- Acceleration with GPU's
- Scale to GPUs & clusters
- Optimized inference deployment
- Target NVIDIA, Intel, ARM platforms

Speaker Details

Email: <u>Amod.Anandkumar@mathworks.in</u> LinkedIn: <u>https://in.linkedin.com/in/ajga2</u> Twitter: <u>@_Dr_Amod</u> **Contact MathWorks India**

Products/Training Enquiry Booth Call: 080-6632-6000

Email: info@mathworks.in

- Share your experience with MATLAB & Simulink on Social Media
 - Use #MATLABEXPO

• Share your session feedback:

Please fill in your feedback for this session in the feedback form