

WE COME FROM A LINEAGE OF INNOVATION & GROWTH

OVERVIEW OF L&T TECHNOLOGY SERVICES

AUTOMOTIVE OVERVIEW

* Logos are properties of respective owners and are used for representative purpose Restricted Circulation | L&T Technology Services | © 2016

AD Offerings

Engineers in ADAS

Restricted Circulation | L&T Technology Services | © 2016

ADAS-EVAL[™] Tool

for Performance Report Generation

VANGEN[®]

Tool

for Data Labelling

MaLT Tool

for Machine Learning Algorithm

Overview

Guidance Systems

Data Acquisition – LIDAR Input Point Cloud Data

- Data acquisition using the Point cloud data generation
- Multi Sensor Capability with data synchronization and Sensor Fusion
- Sensors LIDAR and Camera
- De-noising and Enhancements

Segmentation - Detect obstacles and the outliers

- Classifications using Advanced Machine Learning Algorithm
- Feature extraction and matching
- False removal & Tracker with validation techniques

Clustering Algorithms – Detect Objects in LIDAR point cloud

- Object Detection Algorithm
- Parameter generation and estimation Distance Estimation
- Optimization for real time performance for accuracy, precision and execution time

Restricted Circulation | L&T Technology Services | © 2016

LiDAR and Camera Synchronization

- Image on left, indicates night time camera data
- Image on right, represents the LiDAR point cloud (blue color) is overlaid on the respective camera frame by mapping the LiDAR and camera coordinates.
- The difference in coordinate system is synchronized with intrinsic and extrinsic calibration.
- The obstacles classified and distance is estimated with both camera and LIDAR that makes the system robust.

Frame Number : 1418237369502452

Workflow

Automatic Lighting Control

ALC – Automatic Light Control

LIDAR Object Detection

MATHWORKS - MATLAB

Path Planning for Autonomous Drive

RADAR Detection

Figure 1: Driving Scenario			
File Edit View Insert Tools Desktop Window Help		~	
	Pird's Eve Dist		
		radar road	
- Chase Camera View	(E) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECURITY SYSTEM PORTAL	
	Lateral Position (m)	System (ISMS) portal ployees	
PF.png VirtualDub copying VirtualDub	Feng VirtualDub copying VirtualDub Completion Timeline		
GRATUITY Peng.A.Mi Untitled.m Information Security is Everyone's Responsibility			
honestech TVR 2.5			
	(3) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	18:35	

Restricted Circulation | L&T Technology Services | © 2016

- ✓ To model an AEB scenario in Carmaker where the vehicle's initial velocity is 140kmph and decelerates after detecting a static object with resulting g force less than 0.9.
- ✓ Integrate Simulink with carmaker and compare the performance of the scenario with standalone carmaker model.
- ✓ Integrate the Simulink model with Polarion.

AEB using Carmaker and Simulink

- A scenario is modeled in Carmaker where the initial velocity of car would be 140 kmph.
- ✓ The object sensor in carmaker would detect the static object in the path.
- ✓ This detection is used as a trigger signal in Simulink for g force calculation.
- ✓ The calculated g is fed into PI controller for determining brake percent.
- ✓ This percent is sent as a brake pressure signal to Carmaker to stop the car.

Test case outputs

Restricted Circulation | L&T Technology Services | © 2016

Simulink Modules

- 1. SIMULINK model for Braking.
- 2. Simulink block linked to requirements, design and test case in Polarion.

Linked Simulink block in Polarion

o ✔ BDTC-3 Priority Description Rational Use or	.se Refere 🗆 60.0 📄 🛛 🖉	System Admini	2018-02-08 12: 2018-02-08	9 11:	
🛛 Edit 🍄 🔹 🔚 Save 🔹 📴 Cancel 📑 Open in De	cument		\$ \$	TOIC	
t ∞ BDTC-3 - Priority Description t •	Rational Use case Refe	erence Impacted Stockholders 2 The ve	Created: 2018-02-08 12:37, Up	dated: 2018-02-09 11:41	
Type: 🛃 Test Case Severity: 🔄 Normal Author: System Administrator Project: Delphi TestCase Casegories: Initiel Estimate: Time Spent: emaining Estimate:	Assignes(s): Status: Poraft Resolution: Due Data: Time Point: Planning Constaints: Planned To:	50.0]			
Description Description The vehicle's It can be initial velocity is than 140 140kmph. Examp	Use case Impa Reference Stoc greater mph.	scted :kholders		-	
	n B + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +				
Role URL			Actions	~	Hyperlink will have URL of MATLAB Simulink
external reference http://localhost:31415/ma	lab/feval/rmiobjnavigate?argumer	nts=[%22Delphi_TestCase.mdl%22,%22:2421%22]			 We can directly use this UR go back to Simulink block.
/// Attachments					
Attachments Title File Name		Size	Author Last Modified	Actions	

777

Environmental Generator &

Forward Collision Warning

Environmental Generator

Restricted Circulation | L&T Technology Services | © 2016

Object Detection with 1.3mp Camera up to 50 meters

Machine Learning & Deep Learning Frameworks

Restricted Circulation | L&T Technology Services | © 2018

L&T Testing and Validation Tools

ASTF – ADAS Automated System Test Frame work

LTTS VANGENTM v2.0

Data Annotation and Labelling activity

 VANGEN is Video Annotation Generator tool meant for ground truth generation that supports continuous annotation, re/de-annotation

Differentiators:

- Semi-automated with statistical view of objects and distance estimation
- Data annotation for LIDAR and mapping with vehicle dynamics
- Parallel execution for performance improvement

L&T TS Intellectual Property

 VANGEN – ADAS ground truth application
 ADAS-EVAL - ADAS Algorithm Performance Evaluation

ng MonocularCam

Highly efficient & cost effective ADAS solution for AEB and ACC using monocular camera & FPGA

WHITE PAPER,

- Projection based distortion correction
- Environmental Image generator for ADAS validation
- Deep learning for Unconstrained Self Driving Car
- Safety Alert of ADAS by Integrating Android and Linux
- Testing Simulator for Vision Based ADAS

Forward Collision Warning with AEB

The Challenge

I To detect pedestrians in a video and apply a adaptive brake

Solution Highlights

- Captured video frames, which are processed through pedestrian detection algorithms to extract the features of each frame
- Detected objects information has been send to the ECU and controls the speed of the vehicle and apply the brake.
- Based on the object distance the vehicle will automatically applies the brake.

Business Value Delivered

Building the Autonomous Vehicle using ADAS Features.

THANK YOU

