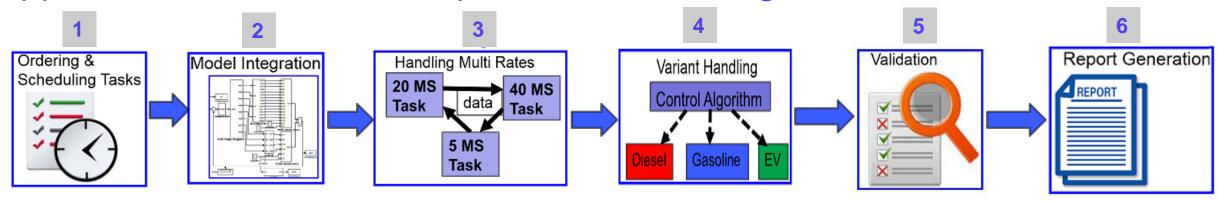
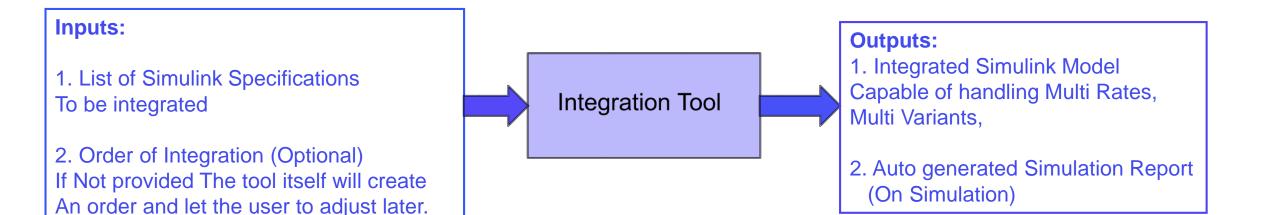
RENAULT NISSAN TECHNOLOGY & BUSINESS CENTRE INDIA PRIVATE LIMITED


Automation of Software Component Model Integration

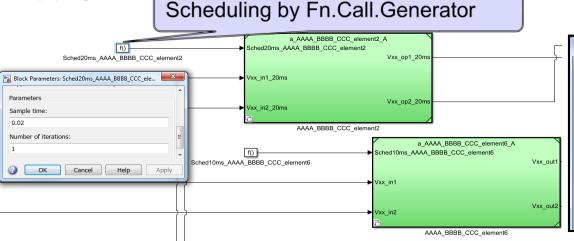

By

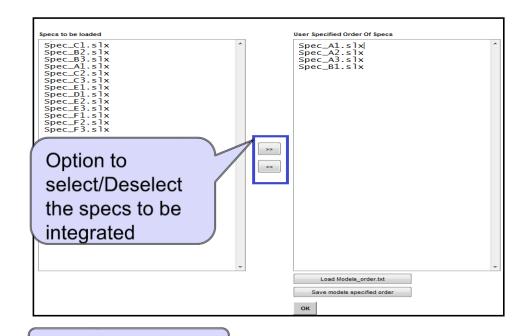
Prabhakaran Thirugnanam
Power Train - Embedded Systems
Renault Nissan Technology Business Centre India

Approach for Software Component Model Integration

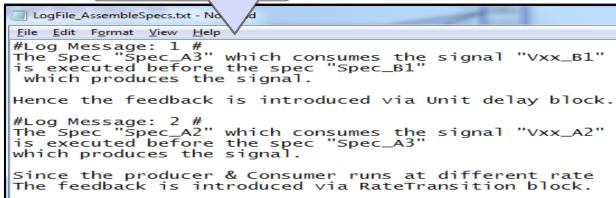
1. Ordering & Scheduling the Specs

Inputs:


List of Specs to be Integrated


Approach:

- The GUI to let the user choose the Spec Order
- Automation scripts Identify the Interfaces between the Specs
- Scheduling achieved by Function Call Generators, (SampleTime is taken from the Scheduler Port name).


Outcome:

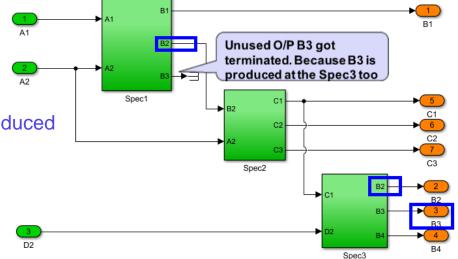
- Suggestions on ordering the Specs in the form log file.
- The GUI let the user to save the Spec Order in the form of txt file.

Sample Log File:

RENAULT NISSAN TECHNOLOGY & BUSINESS CENTRE INDIA PRIVATE LIMITED

2. Model Integration

Inputs:


List of Interfaces of each specs

Approach:

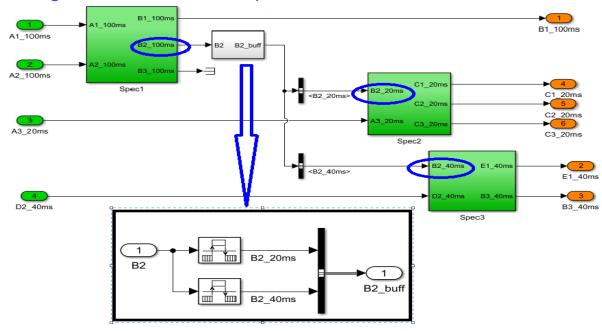
- The Tool analyze the Interfaces connect them as per the name of the interfaces.
- Outports are connected from the bottom to top of the specs so that the updated Signal is considered for outport.
- Inports are connected after connecting the outports
- Inports are connected from the bottom to top of the specs
- Unused Output ports Terminated.
- Feedbacks are introduced as per the need
- Incase of different rates of the signals, Rate Transition blocks are introduced

Outcome:

Specs connected with each other specs

3. Handling Multi Rate

Inputs:


Interfaces and their sample time

Approach:

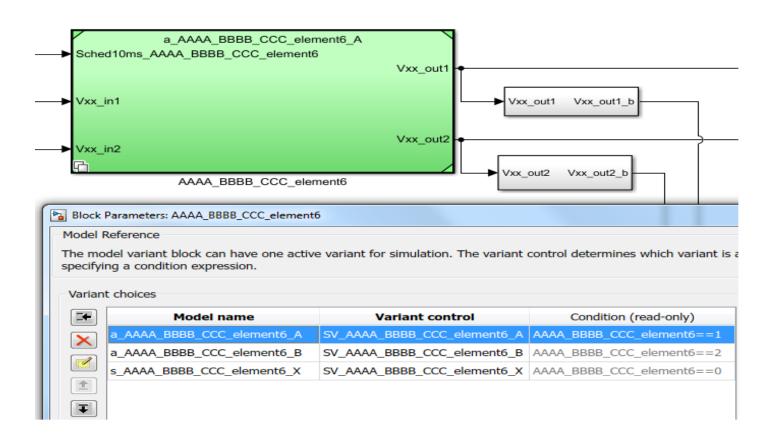
- Tool finds the sample time of the Outport and Inport Interfaces
- Rate Transition Blocks inserted with the expected sample time value.

Outcome:

Automated rate handling achieved between specs.

4. Variant Handling

Inputs:


- List of Specs and their corresponding variants
- Simulink. Variant objects for each variant.

Approach:

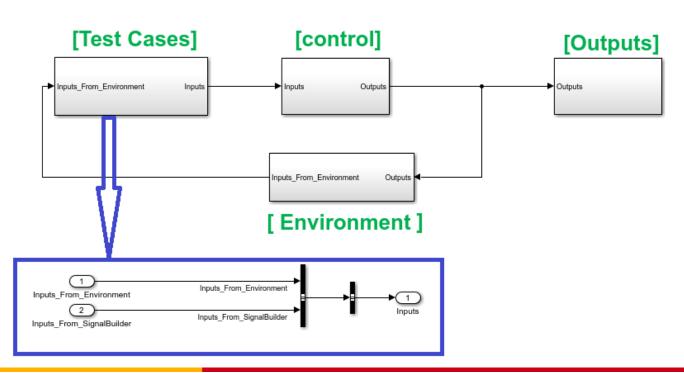
- Tool loads the Simulink. Variant objects in the base workspace
- Identifies the Variants of the spec
- Setting the variants using the parameter "Variants" of the Model Reference Blocks referring the specs.

Outcome:

Reusable Integrated model for different variants.

5. Validation

Inputs:


- Test cases in the form of *.mat file.
- Test cases selection Method (To mention the signal is taken from signal builder or from the environment)
- Content of "[Environment]"

Approach:

- Tool converts the Test cases *.mat to Signal Builder
- Based on the Test Case selection Method, The Inputs are feed to the "[Control]".

Outcome:

MIL Validation Environment

6. Report Generation

Inputs:

- The Integrated Model with complete MIL setup
- Base workspace loaded with the required data

Approach:

- Tool analyzes the Test Cases & Simulate the test cases one by one and store the results in the workspace
- Workspace data will be read & stored in the excel file as below. results are stored in the form of *.mat file too.

Outcome:

Reports of the simulation results.

	A	В	C	D	E	F
1		Inputs			Outputs	
2	Time	In1	In2	In2	Out1	Out2
3	0.01	3	243	5	23	4
4	0.02	4	143	67	6	765
5	0.03	5	54	546	2	746
6	0.04	6	765	76	12	76
7	0.05	2	746	8	56	657
8	0.06	12	76	9	2	4
9	0.07	45	3	7	343	87
10						
11						
12						
13						
14						
15						
16						
17						
d → Test_Case_1			ase_1 To	Test_Case_2 Test_Case_3		ise_3

Conclusion

- This tool drastically reduced the integration phase
- The full automation of all legacy manual processes as Rate transition, unit delay and prebuild variant handling using model referencing is definitely a big leap forward to achieve the best possible productivity.
- Self-intuitive options provided in the GUI, enable the users get very quickly familiar with the tool

RENAULT NISSAN TECHNOLOGY & BUSINESS CENTRE INDIA PRIVATE LIMITED

- Powerful integration capabilities and one-click simulation outcome.
- Anticipated Productivity Improvement by 100%
- Anticipated reduction in Rework by 50%

THANK YOU