MATLAB EXPO 2017 Modeling Mechanical and Hydraulic Systems in Simscape

Dhirendra Singh

too big

difficult

one chance

USER STORY ABB Optimizes Ship Energy Flows

DCNS Simulates Handling System

Lockheed Martin Develops MRO

Courtesy NASA/JPL-Caltech

Why use Simscape?

Makes modeling easy

Simscape handles equations automatically

Simulink

Simscape

Simscape handles equations automatically

Mass1

Damper1

3D mechanics hybrid powertrain

power steering air conditioning

less clicking more simulating

Market Demand:

Reduce energy consumption in integrated systems

Simscape Focus:

Domain integration Algorithm design Optimization

Why model the physical system? Too big, too difficult, one chance, ...

Why Simscape? Makes modeling easy Develop controller Find best design

Agenda

Motivation

- Simscape physical network approach
- Example: BackHoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Physical Modeling with Simulink

- Simulink is best known for signal based modeling
 - Causal, or input/output
- Simscape enables bidirectional flow of energy between components
- System level equations:
 - Formulated automatically
 - Solved simultaneously
 - Cover multiple domains

R*C.s+1

Transfer Fcn

Agenda

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Backhoe Actuation System

• System

- Simulation Tasks
 - 1. Determine required size for actuator components
 - 2. Optimize design parameters in actuator and controller
 - 3. Measure robustness of design with relevant physical effects
 - 4. Test embedded hardware and software using HIL testing

📣 MathWorks

Modeling a Hydraulic Actuation System

Model:

Problem: Model a hydraulic actuation system within the Simulink environment

Solution: Use Simscape Fluids to model the hydraulic system & Simscape Multibody to model mechanical system MATLAB EXPO 2017

Agenda

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Mechanical System

CAD to Simscape Multibody Solutions

- Options for all CAD systems
- Convert full assembly via Simscape Multibody Link
 - Converts mates to joints
 - Mass, inertia, geometry, colors all converted
 - Block diagram built automatically
 - Same hierarchy as CAD model
- Reference files directly
 - STEP or STL files

CAD model

https://cad.onshape.com/documents/58b99e4c0a25bb0ff5a7a368/w/0f8a21 6769e4fc8224eb242e/e/f90780d0737155c0edc950e8

Simscape Multibody Link: Convert CAD Assembly to Simscape Mutibody

- Use Simscape Multibody Link plugin to export from CAD to XML
- Import XML file into Simscape Multibody (>> smimport)

Demo

Lets bring the CAD model into Simscacpe Multibody

Mechanical System

- Fewer iterations on mechanical design because requirements are refined
- Fewer mechanical prototypes because mistakes are caught earlier
- Reduced system cost because components are not oversized
- Less system downtime because system is debugged using virtual commissioning

Agenda

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Demo

Lets Build hydraulic actuation for our mechanical model

Hydraulic Actuation System – using Simscape Fluids

- Provides libraries of component models for fluid power systems
- Models can be customized for your needs
 - Create reusable assemblies
 - Adjust parameterization
 - Define custom components
- Leverage MATLAB and Simulink
 - System-level analysis
 - Control design and HIL testing

MATLAB EXPO 2017

Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Translational and rotational
 - Add or neglect compressibility
- Mechanical effects
 - Hard stops, Friction
 - Forces

- Thermal effects
 - Effect of temperature on fluid properties
 - Heat transfer to environment

Subset of libraries

Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Directional
 - Spool, check, cartridge
 - Parameterization options
- Pressure control
 - Control tasks (variable)
 - Switching tasks (fixed)
- Flow control
 - Pressure dependent
 - Pressure independent

Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

Fixed-Displacement

Pump

Fixed-Displacement Motor

- Fixed and variable displacement
 - Gear pumps, vane and piston pumps
 - Custom pump designs
- Parameterization options
 - Pump delivery
 - Efficiency and losses
 - Leakage and friction

(External Efficiencies) Variable Orifice Displacement specification: By maximum displacement and control member stroke By displacement vs. control member position table Parameterization: By approximating polynomial By two 1D characteristics: P-Q and N-Q

Centrifugal

Pump

Swash Plate

Variable-Displacement

Hydraulic Machine

Porting Plate

Subset of libraries

Leakage and friction: Analytical Tabulated data

By two 2D characteristics: P-Q-W and N-Q-W

Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Configurable pipeline models
 - Fluid compressibility
 - Fluid inertia
 - Wall compliance
 - Elevation changes
 - Heat transfer
- Tanks and accumulators
 - Volume parameteriztion
 - Number of inlets
 - Pressurization

	A W P					<u>00030</u>
Segmented Pipeline		Fluid dynamic compressibility: Off			™ Ei⊯	Edt Yew Display Diagon Smokton
⊳-e ⊪A ⊦	H_AeL_B ⊲ B_B_B	Fluid inertia:		Off · On		Resistive Pipe LP
• A	Variable Elevation	Pipe wall spec	ificatio	on: Rigid - Flexible 📐		Hydraulic Pipe I
□ }]	Pipe (TL)					B A
						Variable Head Two-Arm Tank
-A		Block choices	~	One inlet Two inlets		dV ■B
Gas-Cha Accumu	arged Jator Tank (TL	T⊳ ₩• .)		Three inlets		Variable Head
Pressurization s	specification:	Tank volu	ne pa	rameterization:	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	L.C. VD
Atmospheric pr Specified press	Constant Tabulated	cross- data	sectional area 🔹			
L						

Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Standard and custom types
 - Parallel or counter flow
 - Single or multiple shell passes
 - Mixed or unmixed flow

E-NTU Heat Exchanger (TL-TL)

	Heat exchanger type:
	Concentric pipes
r	Shell and tube Cross flow
	Generic - effectiveness table

- Parameterization options
 - Pressure losses
 - Heat transfer
 - Compressibility

Pressure loss parameterization: Constant loss coefficient Correlations for tubes Tabulated data - Darcy friction factor vs. Reynolds number Tabulated data - Euler number vs. Reynolds number Heat transfer parameterization: Heat transfer parameterization: Constant heat transfer coefficient Correlation for tubes Tabulated data - Colburn factor vs. Reynolds number Tabulated data - Nusselt number vs. Reynolds number & Prandtl number

In particular bracker brack (ab (bot (bot))) A1 A2-n B1 B2-n E-NTU Heat Exchanger Concentric Pipes A1 B1 B2-n Concentric Pipes A1 A2 B1 B2-n B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2 B1 B2 B1 B1 B2 B1 B2</

Subset of libraries

Create or Modify Reusable Components

Equations defined in a text-based language

- Based on variables, their time derivatives, parameters, etc.
- Define simultaneous equations
 - Can be DAEs, ODEs, etc.
 - Assignment not required
 - Specifying inputs and outputs not required

$$q = \begin{cases} C_{D} * \sqrt{A \frac{2}{\rho} |p|} * sign(p) & Re \ge Re_{cr} \\ 2 * C_{DL} * A \frac{D_{H}}{\nu \rho} p & Re < Re_{cr} \end{cases}$$

Agenda

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Estimating Model Parameters Using Measured Data

Problem: Simulation results do not match measured data because model parameters are incorrect

Solution: Use Simulink Design Optimization to automatically tune model parameters MATLAB EXPO 2017

Area _A	Area _B	Area _v
0.0176	0.0106	200

Estimating Model Parameters Using Measured Data

- Steps to Estimating Parameters
- 1. Import measurement data

2. Identify parameters and their ranges

3. Estimate parameters

Agenda

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Simscape Key Points

- Enables you to use physical networks to model systems spanning multiple physical domains
- Provides a MATLAB-based language for creating custom component models
- Fully integrated with MATLAB and Simulink
 - Integration with control algorithm
 - Optimization
 - C code generation for HIL

Agenda

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
 - Mechanical system
 - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design

Training Services

Exploit the full potential of MathWorks products

Flexible delivery options:

- Public training available in several cities
- Onsite training with standard or customized courses
- Web-based training with live, interactive instructor-led courses

More than 48 course offerings:

- Introductory and intermediate training on MATLAB, Simulink, Stateflow, code generation, and Polyspace products
- Specialized courses in control design, signal processing, parallel computing, code generation, communications, financial analysis, and other areas

Modeling Mechanical and Hydraulic Systems in Simscape

- Modeling Physical Systems with Simscape
 - This one-day course discusses how to model systems in several physical domains and combine them into a multidomain system in the Simulink environment using Simscape
- Modeling Fluid Systems with Simscape
 - This one-day course focuses on modeling hydraulic systems in Simulink using Simscape Fluids
- Modeling Driveline Systems with Simscape
 - This one-day course focuses on modeling mechanical systems for automotive applications in the Simulink environment using Simscape Driveline

Modeling Mechanical and Hydraulic Systems in Simscape

- Modeling Multibody Mechanical Systems with Simscape
 - This one-day course discusses how to model rigid-body mechanical systems in the Simulink environment using Simscape Multibody
- Modeling Electrical Power Systems with Simscape
 - This one-day course discusses how to model electrical power systems in the Simulink environment using Simscape Power Systems

Questions & Discussion

Accelerating the pace of engineering and science

Speaker Details

Email: dsingh@mathworks.com

Phone: 9920288785

Twitter: @mech_dps

Contact MathWorks India

Products/Training Enquiry Booth Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.