MATLAB EXPO 2018

Simulation, prototyping and verification of standards-based wireless communications

Gerald Albertini

A Myriad of Wireless Standards

...and growing complexity

From Design to Prototype and beyond

- A **common** design environment across multiple teams
- Target off-the-shelf hardware for prototype development
- Minimize time to market

Modeling Wireless Standards with MATLAB & Simulink

Typical Use Cases

VHT format detected Decoding L-SIG... L-SIG check pass L-SIG EVM: 1.89% RMS RXTIME: 84us Number of samples in packet: 6720

Golden Reference for Verification

Verify in-house PHY models

End-to-End Link-Level Simulation

How do design choices affect system performance?

Signal Generation and Analysis

Test with live data

Signal Information Recovery

Decode real-world signals

LTE System Toolbox

Granularity

Wireless Modeling Challenges

Wireless Digital Video Broadcasting with RF Beamforming

Model a digital video broadcasting system which includes phased array antennas. The baseband transmitter, receiver and channel are realized

Open Script

Wireless design challenges

The Model Based Design Advantage

Requires 7 different skills to be successful!

MathWorks[®]

Modeling 802.11ad – Including Beamforming DEMO

- Uniform linear array of 4 elements (TX & RX)
- MIMO channel with 6 scatterers
- PER and EVM for 802.11ad link

Modelling 802.11ad Beamforming

Working with Real Signals

Going beyond simulation

Supported Hardware for Radio Connectivity

DEMO Radio I/O

Stream Over the Air signals – Explore spectrum

Highlights Modelling MIB Decoding

3GPP TS36.331 Section 6.2.2

- Emulate the User Equipment using a SDR
- Implement LTE Cell Search procedure
- Physical layer processing:
 - Cell search
 - Time and frequency offset estimation and correction
 - OFDM demodulation
 - Channel estimation and equalization
 - PBCH Demodulation
 - BCH Decoding
 - MIB Parsing

Highlights Modelling MIB Decoding

3GPP TS36.331 Section 6.2.2

Golden reference

- Ensure my implementation is correct
- E.g. PSS/SSS sequence for cell search

Algorithm development

- Link-level simulation to analyse receiver IP performance
- E.g. channel estimation

- Verification

- Capture and decode over-the-air waveforms offline
- Verify behaviour before moving to HW

DEMO LTE Scanner

LTE Cell Scanner

From Design To Hardware

MATLAB

- Large data sets
- Explore mathematics
- Data visualization

Simulink

- Model HW Parallel architectures
- Simulation
- Code Generation Capabilities

Targeting FPGA and ASIC

- Streaming design
- Implementation detail
- Architectural specification
- Verification

Typical Workflow

Zynq SDR - Hardware Support Package

Real Time LTE Frequency Scanner

Targeting an algorithm to the FPGA and ARM

Run on Programmable Logic

LTE Cell Scanner Example: Algorithm

Model Algorithm

- Generate Bitstream
- SW Interface Model
- Run on Hardware

LTE Cell Scanner Example: Generation

HDL Advisor Step by Step Assistant: Set Target

HDL Workflow Advisor - zynqRadioHWSWLTEMIBDetectorAD9361AD9364SL/L

File Edit Run Help

Find:

~ 🗇 🔿

- HDL Workflow Advisor
 - 🕆 🐻 1. Set Target
 - ^1.1. Set Target Device and Synthesis Tool
 - ^1.2. Set Target Reference Design
 - ^1.3. Set Target Interface
 - > 👼 2. Prepare Model For HDL Code Generation
 - 3. HDL Code Generation
 - > 👼 4. Embedded System Integration

3. Set Target Interface					
Analysis (^Triggers Up	date Diagram))			
Set target interface for	HDL code ger	neration			
Input Parameters					
Processor/FPGA synch	ronization: F	ree running			•
Target platform interf	ace table				
Port Name	Port Type	Data Type	Target Platform Interfaces		Bit Range ,
RxDataI_In	Inport	sfix16_E	Rx data I1 In [0:15]	•	[0:15]
RxDataQ_In	Inport	sfix16_E	Rx data Q1 In [0:15]	•	[0:15]
RxDataValid_In	Inport	boolean	Rx data Valid In	•	[0]
start	Inport	boolean	AXI4-Lite	•	x"104"
externalDataSel	Inport	boolean	AXI4-Lite	•	x"108"
RxDataI_Out	Outport	int16	Rx data I1 Out [0:15]	•	[0:15]
RxDataQ_Out	Outport	int16	Rx data Q1 Out [0:15]	•	[0:15]
<					

HDL Advisor Step by Step Assistant: Check Model

HDL Workflow Advisor - zynqRadioHWSWLTEMIBDetectorAD9361AD9364SL/LI

File Edit Run Help

Find:

~	\$ \$	
---	-------	--

- HDL Workflow Advisor
 - > 😼 1. Set Target
 - ✓ 1 2. Prepare Model For HDL Code Generation
 - 2.1. Check Global Settings
 - ^2.2. Check Algebraic Loops
 - ^2.3. Check Block Compatibility
 - ^2.4. Check Sample Times
 - > 👼 3. HDL Code Generation
 - > 👼 4. Embedded System Integration

HDL Workflow	Advisor	
Analysis		
Check and Pre	pare Model for HDL code generat	tion
Run All		
□ Show report	after run	
Show report	after run	
Show report Report	after run	
Show report Report Report:	after run\report_1332.html Save	As
Show report Report Report: Date/Time:	after run \report_1332.html Save / 25-May-2018 17:44:44	As

HDL Advisor Step by Step Assistant: Generate HDL

HDL Workflow Advisor - zynqRadioHWSWLTEMIBDetectorAD9361AD93

File Edit Run Help

Find:

 $\sim \Leftrightarrow \Rightarrow$

HDL Workflow Advisor

- > 🐼 1. Set Target
- > 🐼 2. Prepare Model For HDL Code Generation
- ✓ 3. HDL Code Generation
 - 3.1. Set Code Generation Options
 - ^3.2. Generate RTL Code and IP Core
- > 🚳 4. Embedded System Integration

3.2. Generate RTL Code and IP Core Analysis (^Triggers Update Diagram)					
Generate RTL code and IP core for embedded system Input Parameters					
IP core name: LTE_MIB_HDL_ip					
IP core version: 1.0					
IP core folder: C:\Temp\HDL\ipcore\LTE_MIB_HDL_ip_v1_0					
IP repository:					
Additional source files:					
☑ Generate IP core report					
Run This Task					
Result: 🥝 Passed					

Generated HDL Code

MATLAB EXPO 2018

Navigating Code and Viewing Reports

18 19 20 21 22	LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; USE IEEE.numeric_std.ALL;							_	
23	ENTITY LTE MIB HDL ip src QPSK Demod IS								l.vhd
24	PORT(Inl re	:	IN S	td logic v	vector	(18	DOWNTO 0);	sfix19 En7	
25	Inl_im	:	IN S	td_logic_v	vector	(18	DOWNTO 0);	sfix19_En7	
26	bit0	:	OUT s	td_logic_v	vector	(18	DOWNTO 0);	sfix19_En7	
27	bitl	:	OUT s	td_logic_v	vector	(18	DOWNTO 0)	sfix19_En7	
28);								
29	END LTE_MIB_HDL_ip_src_QPSK_Demod;								
30									er/PBC
31								-	
32	ARCHITECTURE rtl OF LTE_MIB_HDL_ip_src_QF	SK	_Demod IS						
33									
34	Signals					-			
35	SIGNAL Inl_re_signed	:	signed(18	DOWNTO 0));	· sfi	1X19_En7		
36	SIGNAL Inl_im_signed	:	signed(18	DOWNTO 0));	· sfi	1x19_En7		
37	SIGNAL Unary_Minus_cast	:	signed(19	DOWNTO 0));	· sii	1x20_En7		
38	SIGNAL Unary_Minus_cast_1	:	signed(19	DOWNTO ());	· SII	1x20_En7		
39	SIGNAL Unary_Minus_cast_2	:	signed (19	DOWNTO ());	· SII	1x20_En7		
40	SIGNAL Unary_Minus_cast_3	:	signed(19	DOWNTO ());	· sii	1x20_En7		
41	SIGNAL Unary_Minus_outl_re	:	signed(18	DOWNTO 0));	· sfi	LX19_En7		
42	SIGNAL Unary_Minus_outl_im	:	signea(18	DOWNTO 0));	· síi	IXI9_EN7		
<								~	
							<u>O</u> K	Help	

HDL Advisor Step by Step Assistant: SW Model & Bitstream

HDL Workflow Advisor - zynqRadioHWSWLTEMIB

^B Zynq Radio Software Interface Model: zynqRadioHWSWLTEMIBDetectorAD9361AD9364SL

Run on Hardware

Extending Standards LTE to 5G

Conclusions

Wireless Designs starts with MATLAB

- Prove algorithm and design with **simulation** and **over-the-air signals**
- Generate customizable waveforms to verify conformance to the latest 5G, LTE, and WLAN standards
- Automatically generate HDL or C code for prototyping and

implementation without hand-coding

