MATLAB EXPO 2018

Model Quality Objectives to improve collaboration between manufacturers and suppliers

François Guérin

Model Quality Objective working group

 Idea emerged from SQO success few years ago Software Quality Objectives for Source Code

<u>A.</u> Patrick BRIAND⁵, <u>B.</u> Martin BROCHET^{4,} <u>C.</u> Thierry CAMBOIS², <u>D.</u> Emmanuel COUTENCEAU⁵ <u>E.</u> Olivier GUETTA³, <u>F.</u> Daniel MAINBERTE², <u>G.</u> Frederic MONDOT³, <u>H.</u> Patrick MUNIER⁴, <u>I.</u> Loic NOURY⁴, <u>J.</u> Philippe SPOZIO², <u>K.</u> Frederic RETAILLEAU¹

1. Delphi Diesel System France s.a.s, 9 bd de l'Industrie 41042 BLOIS France

- 2. PSA Peugeot Citroën, 75 avenue de la Grande-Armée, BP01, 75761 PARIS
- 3. Renault s.a.s, 13/15 Quai Alphonse Le Gallo, 92100 BOULOGNE-BILLANCOURT
- The MathWorks, 2 rue de Paris 92196 MEUDON France

5. Valeo, 43 Rue Bayen, PARIS 75017

ERTS 2010 conference

- New working group focused on model (MQO)
 - extended to Robert Bosch
 - consensus-based decisions, ~100h of meetings over 2,5 years, many document reviews

Model Quality Objectives for Embedded Software Development with MATLAB

and Simulink

Jérôme Bouquet (Renault), Stéphane Faure (Valeo), Florent Fève (Valeo), Matthieu Foucault (PSA Peugeot Citroën), Ursula Garcia (Robert Bosch), François Guérin (MathWorks), Thierry Hubert (PSA Peugeot Citroën), Florian Levy (Renault), Stéphane Louvet (Robert Bosch), Patrick Munier (MathWorks), Pierre-Nicolas Paton (Delphi Technologies), Alain Spiewek (Delphi Technologies)

ERTS² 2018 conference

Goals

- Agree on a state-of-the art for model-based design in the context of software development.
- Establish common expectation on model quality when doing codevelopment between different parties.
- Help non-software developers to understand how they contribute to software development.
- Clarify impact of successive design stages with Simulink and how to transition from early prototyping to final design.

Model Quality Objectives – SW development process

A software development supported by <u>design models</u>

Model Quality Objectives – SW requirements phase

Functional model goals

Accelerate the stabilization of the software functional requirements

Improve the quality of the software functional requirements

No data typing

٠

- Continuous or discrete
- Focus on complex

requirements

I Model does not replace the software functional requirements !

MATLAB EXPO 2018

Model Quality Objectives – SW architectural design phase

Architecture model goals

Model and verify the component interfaces, connections and scheduling

Comply with modeling and architecture standard (e.g. AUTOSAR)

DOC

- Fully typed
- Discrete
- Assembly of model references

Need to be traced to requirements, commented, and linked with a data dictionary MATLAB EXPO 2018

Model Quality Objectives – SW component design phase

Component design model

Model precisely the algorithms with a rich modelling language Is functionally correct, robust and compliant with modelling standard

- Fully typed
 - Discrete
- Mix of libraries and native blocks

Need to be fully tested with 100% of requirement and design coverage MATLAB EXPO 2018

Model Quality Objectives – SW component implementation phase

Component implement model

Generate production code

Generates code that is correct, robust, performant and compliant with coding standard

Hardware bo	ard: None			•					
Code Genera	ation system target fi	ile: <u>ert.tl</u>	c						
Device vendo	or: ARM Compatible			Device type:	ARM (Cortex		•	
 Device det 	ails								
Number	Largest	Largest atomic size							
char:	8 short:	16	int:	32					_
long:	32 long long:	64	float:	32	integer:		Long		
double:	64 native:	32	pointer:	32	floating-	point:	Double		~
size_t:	32 ptrdiff_t:	32							
Di ta anda		1 ml - 5- J	I		cianad intera			7	_
Byte orde	ering:	Little End	ian		Signed integ	er aivi	sion rounds to:	Zero	
🗹 Shift ri	ght on a signed inte	ger as ari	thmetic sh	hift					
Suppor	rt long long								

- Fully typed
- Mix of libraries, native blocks.
- Code generation configured

for target hardware

I Generated code needs to be fully tested with 100% of requirement and code coverage

MATLAB EXPO 2018

Model Quality Objectives – Relationship between design models

Model Quality Objectives – Relationship between design models

MQO/ Model-Based Design Workflow

Compatible with existing industry standards

- Complementary and compatible with existing standards
- Provide metrics and threshold to address quality requirements referred in standards
- Additional guidelines on planning phase to define responsibilities, and ensure workflow compatibility.

MQO clarifies exchanges and discussions

Model Quality Objectives / Requirements

Design m	Design model name Functional model		Quality Objective	Set of re	f requirements (MOO) to be able to assess				
Function			MQO-1 the gue		requirements (ingo) to be able to assess				
Architecture model			MQO-2	the quality of each type of model					
Component design model			MQO-3						
Component imple	ementatior	n model	MQO-4						
	MQR ID		MQR Title		MQO-1	MQO-2	MQO-3	MQO-4	
	MQR-01 Model la		/out		М	М	М	М	
	MQR-02Model commentsMQR-03Model links to requirementsMQR-04Model testing against requiremMQR-05Model compliance with modelinMQR-06Model dataMQR-07Model sizeMQR-08Model complexity				М	М	М	Μ	
					М	М	М	Μ	
				ents	М	R	М	Μ	
				ng standard		М	М	Μ	
						М	М	М	
							М	М	
							М	М	
MQR-09 M			verage				М	Μ	
	MQR-10	Model ro	bustness				М	М	
	MQR-11	Generate	ed code testing agains	t requirements			R	Μ	
	MQR-12	Generate	ed code compliance wi	th coding standard			R	Μ	
M: Mandatory	MQR-13	Generate	ed code coverage				R	Μ	
R: Recommended	MQR-14	Generated code robustness			R	М			
	MQR-15	Generated code execution time					М		
MATLAB EXPO 2018	MQR-16	Generated code memory footprint						Μ	

Example of Model Quality Requirement

MATLAB EXPO 2018

MQR-08	Model complexity							
Description	The model and its subsystems, Stateflow charts and MATLAB functions shall have a local cyclomatic complexity lower or equal to "30".							
Recommendation	MQ0-1 MQ0-2 MQ0-3 MQ0-4							
level			Mandatory	Mandatory				
Notes	Local complexity is the cyclomatic complexity for objects at their hierarchical level. Aggregated cyclomatic complexity is the cyclomatic complexity of an object and its descendants. The threshold of 30 for local cyclomatic complexity is a recommendation and can be adapted on a project basis. The number 30 for Cyclomatic complexity has been derived from the HIS code metric (value of 10) and adapted to Model-Based Design.							
References /	Cyclomatic complexity is a measure of the structural complexity of a model. It							
Examples of	approximates the Mc	Cabe complexity meas	ure for code generate	ed from the model. The				
techniques McCabe complexity measure is slightly higher on the generated code due to that the model coverage analysis does not consider								
	To compute the cyclomatic complexity of an object (such as a block, chart, or s model coverage uses the following formula:							
	$c = \sum_{1}^{n} (o_n - 1)$							
	N is the number of decision points that the object represents and o_n is the number of							
	outcomes for the <i>n</i> th decision point. The tool adds 1 to the complexity number for atomic subsystems and Stateflow charts.							
Rational	Cyclomatic complexit	y is a leading testabili	ty metric. Test harn	ess can be created for				
Last update	1.0	assystem, charcenter						

17

MathWorks metric support

- All MQR can be measured with MathWorks tools
- Simulink Check provides additional metrics for size, architecture, compliance and readability
- Metric dashboard introduced in R2017b is rapidly involving to display and navigate from metrics results to models
 MATLAB EXPO 2018

