MATLAB EXPO 2018

Introduction à Simulink et Stateflow

Olivier Berard

Topics we will address this session

- Why model a system?
- Why use Simulink?
- Getting to grips with the basics of Simulink and Stateflow through a worked example

Why model a system?

Image credit: McLaren

Image credit: Peter Gronemann | Wikipedia

Modelling & Simulation gives you insight

Traditional Development Process

Model-Based Design

Model-Based Design

Why use Simulink?

Model Based Design with Simulink

- Modelling and simulation
 - Multidomain Dynamic Systems
 - Nonlinear Systems
 - Continuous-time, Discrete-time, Multi-Rate systems
- Plant and Controller Design
 - Select/optimise control architecture and parameters
 - Rapidly model "what-if" scenarios
 - Communicate design ideas
 - Embody performance specifications
- Implementation
 - Automatic code generation
 - Embedded systems, FPGAs, GPUs
 - Rapid prototyping for HIL, SIL, PIL
 - Verification and validation

Optimise System-Level Performance

- Simulating plant and controller in one environment allows you to optimize system-level performance.
 - Automate tuning process using optimization algorithms
 - Accelerate process using parallel computing

Detect Integration Issues Earlier

- Controls engineers and domain specialists can work together to detect integration issues in simulation
 - Convert plant models to C code for hardware-in-the-loop tests
 - Share models with other internal users
 - Share models with external users while protecting IP

Using Simulink & Stateflow

Model-Based Design Application

- Rotate a camera to track an object
- Computer vision application
- Closed-loop motor control

What questions do we want to answer?

- Can I get the closed loop response I need?
- What current will my motor draw during operation?
- Does my system still work if component values change?
- What if...?

Steps in the process

- 1. Model the motor
- 2. Model the speed controller
- 3. Refine the motor model using measured data
- 4. Model the supervisory logic
- 5. Validate and integrate the image processing algorithm
- 6. Deploy the control model to hardware

At each stage: Simulate the model

Stateflow Overview

- Extend Simulink with a design environment for developing state machines and flow charts
- Design systems containing control, supervisory, and mode logic
- Describe logic in a natural and understandable form with deterministic execution semantics

Modelling the system with Simulink and Stateflow

Conclusions

- Modelling and simulation gives you insight to make smarter decisions, earlier
- Simulink allows you to model the complete system in a single environment
- Accelerate your simulation work with the power of MATLAB