MATLAB EXPO 2018

Introduction to Machine Learning and Deep Learning

Valerie Leung

Machine learning in action

CamVid Dataset

- 1. Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008
- 2. Semantic Object Classes in Video: A High-Definition Ground Truth Database, Pattern Recognition Letters

Machine learning is everywhere

- Image recognition
- Speech recognition
- Stock prediction
- Medical diagnosis
- Predictive maintenance
- Language translation
- and more...

Agenda

- Machine Learning
 - What it is
 - Example : object classification
- Deep Learning
 - What it is and why it is popular
 - Object classification revisited
- Tackling time series with deep learning

What is machine learning?

Machine learning uses data and produces a program to perform a task

Task: Image Category Recognition

What is machine learning?

Machine learning uses data and produces a program to perform a task

Task: Image Category Recognition

Machine Learning: problem specific overview

Example: Object Classification with Machine Learning

Task: Distinguish between 5 categories of vehicles

MathWorks[®]

Using the Classification Learner App to determine the best model

Classification Learner - Confusion Matrix									- 🗆 X
CLASSIFICATION LEARNER VIEW									
New Feature PCA Linear SVM Quadratistic FILE FATURES Data Browser Fatures Fatures	Cubic SVM MODEL TYPE	Advanced Use Parallel TRAINING Scatter Confusion F Pot Matrix TRAINING	ROC Curve Parallel Coordinates	Plot Model ▼ EXPORT					
- History		<u> </u>							Plot
1.7 🟠 SVM Last change: Quadratic SVM	Accuracy: 75.1%	-			Model 1.8			1	 Number of observations
1.8 ☆ SVM Last change: Cubic SVM 1.9 ☆ SVM	Accuracy: 76.1% 250/250 features Accuracy: 24.8%	Bigtrucks	463	3	10	33	36		True Positive Rates
Last change: Fine Gaussian SVM 1.10 🏠 SVM Last change: Medium Gaussian SVM	250/250 features Accuracy: 75.6% 250/250 features								Positive Predictive Values False Discovery Rates
1.11 🏠 SVM Last change: Coarse Gaussian SVM	Accuracy: 69.6% 250/250 features								What is the confusion matrix?
1.12 🟠 KNN Last change: Fine KNN	Accuracy: 70.9% 250/250 features	Cars	2	376	114	44	9		
1.13 ☆ KNN Last change: Medium KNN	Accuracy: 69.5% 250/250 features	-							
1.14 🟠 KNN Last change: Coarse KNN	Accuracy: 61.6% 250/250 features	ass							
1.15 🟠 KNN Last change: Cosine KNN	Accuracy: 74.6% 250/250 features	o Suvs	4	94	371	52	24		
1.16 🏠 KNN Last change: Cubic KNN	Accuracy: 67.0% 250/250 features								
1.17 🏠 KNN Last change: Weighted KNN	Accuracy: 70.3% 250/250 features								
4.0 ← Encemble ✓ Current Model	Acouracy: 47.20/ ¥	Trucks	17	19	53	417	39		
Model 1.8: Trained	^								
Results Accuracy 76.1% Prediction speed ~1500 obs/sec Training time 27.244 sec		Vans	24	12	20	43	446		
Model Type Preset: Cubic SVM Kernel function: Cubic Kernel scale: Automatic Box constraint level: 1		L	BigIRICKS	C _{Ø/S}	ر Vr _{Vr} s Predicted class	Tructs	Vans		
Data set: SceneImageData Observations: 272	5 Size: 5 MB Predictors:	250 Response: sceneType Response Classes	: 5			Validation:	5-fold Cross-Validation	n	

9

Agenda

- Machine Learning
 - What it is
 - Example : object classification
- Deep Learning
 - What it is and why it is popular
 - Object classification revisited
- Tackling time series with deep learning

Deep Learning for Classification What is Deep Learning ?

- Subset of machine learning with automatic feature extraction
 - Learns features and tasks directly from data
 - More data = better model

Deep Learning for Classification Applications: autonomous driving, image classification, etc.

Detection of cars and road in autonomous driving systems

Single Image Age Estimation^{3,4}

Rain Detection and Removal¹

- Iris Recognition 99.4% accuracy²
- 1. "Deep Joint Rain Detection and Removal from a Single Image" Wenhan Yang, Robby T. Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan
- 2. Source: An experimental study of deep convolutional features for iris recognition Signal Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE Shervin Minaee; Amirali Abdolrashidiy; Yao Wang; An experimental study of deep convolutional features for iris recognition
- 3. "DEX: Deep Expectation of apparent age from a single image", Rasmus Rothe, Radu Timofte and Luc Van Gool, Looking at People Workshop, ICCV 2015
- 4. Image source : https://en.wikipedia.org/wiki/Emmanuel_Macron

Deep Learning for Classification Deep Learning Enablers

Increased GPU acceleration

Labeled public datasets

World-class models to be leveraged

AlexNet PRETRAINED MODEL

Caffe

MODELS

VGG-16 PRETRAINED MODEL

GoogLeNet

ResNet

TensorFlow/Keras

Deep Learning for Classification

What does a Convolutional Neural Network (CNN) architecture look like?

Deep Learning for Classification

What does a Convolutional Neural Network (CNN) architecture look like?

Convolution puts the input images through a set of convolutional filters, each of which activates certain features from the images.

Rectified linear unit (ReLU) allows for faster and more effective training by mapping negative values to zero and maintaining positive values.

Pooling simplifies the output by performing nonlinear downsampling, reducing the number of parameters that the network needs to learn about.

The next-to-last layer is a **fully connected layer** (FC) that outputs a vector of K dimensions where K is the number of classes that the network will be able to predict. This vector contains the probabilities for each class of any image being classified.

The final layer of the CNN architecture uses a **softmax** function to provide the classification output.

Deep Learning for Classification Two approaches

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Deep Learning for Classification Transfer Learning workflow

Example: Object Classification revisited with Transfer Learning

New Data

MathWorks[®]

How do I visualize and debug deep neural networks?

Feature Visualization

Network Activations

Deep Dream

Recap: Deep Learning for Images

- Deep learning: end-to-end training including automatic feature extraction
- Two approaches:
 - Train from scratch requires lots of labeled training data
 - Transfer learning leverage existing models and adapt to new task
- Visualize and debug networks with built-in functions

Agenda

- Machine Learning
 - What it is
 - Example : object classification
- Deep Learning
 - What it is and why it is popular
 - Object classification revisited
- Tackling time series with deep learning

Deep Learning for Time Series

Basic Network: Recurrent Neural Network (RNN)

- Problems
 - Vanishing gradients: only short-term dependencies are captured – information from earlier time steps decays
 - Exploding gradients: error can grow drastically with each time step

Long Short-Term Memory (LSTM)

Selectively retains relevant information and forgets irrelevant information

Example: Human Activity Recognition from Mobile Phone Data

Objective: Train a classifier to classify human activity from sensor data

Data:

Predictors	3-axial Accelerometer and Gyroscope data					
Response	Activity: 🕺 🏂 🖺 🕇 🖆					

How do I know if my deep network is defined correctly?

✓ MathWorks [®]	Products Solutions	Academia Sup	port Community Eve	ents	
File Exchange				Search File Exchange	File Exchange - Q
MATLAB Central - Files	Trial software				
Network Analyzer Visualize and Analyze network	Deep Learnin version 1.0 (15.1 KB) by Visualize and Analyze	g Network MathWorks Neural Deep Learning N	Neural Network Toolbox	★★★★★ 6 Ratings 134 Downloads Updated 19 Apr 2018	

eep Learning Network Analyzer						
net nalysis date: 11-May-2018 14:42:34					177 i layers	0 A 0 0 warnings errors
		ANAL	YSIS RESULT			$\overline{\mathbf{r}}$
input 1		Ť	NAME	TYPE	ACTIVATIONS	LEARNABLES
conv1	- 11	1	input_1 224x224x3 images with 'zerocenter' normalization	Image Input	224×224×3	-
bn_conv1	- 11	2	conv1 64 7x7x3 convolutions with stride [2 2] and padding [3 3 3 3]	Convolution	112×112×64	Weights 7×7×3×64 Bias 1×1×64
activation_1_relu		3	bn_conv1 Batch normalization with 64 channels	Batch Normalization	112×112×64	Offset 1×1×64 Scale 1×1×64
max_pooling2d_1		4	activation_1_relu ReLU	ReLU	112×112×64	-
• res2a_branch2a • res2a_branch1		5	max_pooling2d_1 3x3 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	55×55×64	-
bn2a_branch2a		6	res2a_branch2a 64 1x1x64 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	55×55×64	Weights 1×1×64×64 Bias 1×1×64
res2a branch2b		7	bn2a_branch2a Batch normalization with 64 channels	Batch Normalization	55×55×64	Offset 1×1×64 Scale 1×1×64
• bn2a_branch2b		8	activation_2_relu ReLU	ReLU	55×55×64	-
 activation_3_relu 		9	res2a_branch2b 64 3x3x64 convolutions with stride [1 1] and padding 'same'	Convolution	55×55×64	Weights 3×3×64×64 Bias 1×1×64
		10	bn2a branch2b	Batch Normalization	55×55×64	Offset 1×1×64

29

Recap – Deep Learning for time series

LSTMs good for handling temporal dependence

Define with <u>lstmlayer</u> and <u>bilstmlayer</u>

Key Takeaways : Why use MATLAB for Deep Learning

- Handle and label large sets of data
 - Handle images with imageDatastore
- Accelerate deep learning with GPUs on desktops, clusters, and clouds
- Visualize and debug deep neural networks
- Access and use models from experts

