MATLAB EXPO 2018

Big Data with MATLAB and Spark

Pierre Harouimi

Real-World Example: Sports Analytics

- Too much data to handle and capture it
- Difficult to predict
- Real-Time dependence

Big data workflow: from desktop to production

So, what's the big (data) challenges?

Standard tools won't work

• Time-consuming

Need to learn new tools & rewrite algorithms

Solution!

Standard tools won't work

Time-consuming

 Need to learn new tools & rewrite algorithms

Prototype algorithms quickly

Run directly from MATLAB with tall arrays

Use the same MATLAB code

Datastore & tall arrays

Use datastore to define file-list
 > ds = datastore('*.csv')

- 2. Create tall table from datastore
 >> tt = tall(ds)
- 3. Act like ordinary table in parallel
 >> model = fitlm(tt.Temp=...)
- 4. Request on local machine
 >> result = gather(tt.result)

Tall arrays: very small changes

1 file

Access Data

measured = readtable('PumpData.csv'); measured = table2timetable(measured);

Preprocess Data

Select data of interest

measured = measured(timerange(seconds(1),seconds(2)),:)

Work with missing data

measured = fillmissing(measured, 'linear');

Calculate statistics

m = mean(measured.Speed);

s = std(measured.Speed);

1000+ files

Access Data

measured = datastore('PumpData*.csv'); measured = tall(measured); measured = table2timetable(measured);

Preprocess Data

Select data of interest

measured = measured(timerange(seconds(1),seconds(2)),:)

Work with missing data

measured = fillmissing(measured, 'linear');

Calculate statistics

m = mean(measured.Speed);

s = std(measured.Speed);

[m,s] = gather(m,s);

MATLAB EXPO 2018

Workflow Pattern

Access out of memory data

Work with subsets of your data

Develop functions for event detection and calculation

Apply functions to all of your data

Aggregate, summarize, & visualize

datastore & tall

findgroups, splitapply

Normal MATLAB code

cellfun

table, histogram, heatmap, boxplot, binScatterPlot

MATLAB Distributed Computing Server (MDCS)

Local Parallel Computing

Deployed Parallel Computing

What is Hadoop/Spark?

Scaling with Spark: Very small changes too!

Desktop Code

Spark + Hadoop Code

Define the Execution Environment

mapreducer(gcp);

Access Data

```
measured = datastore('PumpData*.csv');
measured = tall(measured);
```

Define the Execution Environment

setenv('HADOOP_HOME', '/path/to/hadoop/install')
setenv('SPARK_HOME', '/path/to/spark/install');
cluster = parallel.cluster.Hadoop;

mapreducer(cluster);

Access Data

measured = datastore('PumpData*.csv'); measured = tall(measured);

Big Data with MATLAB & Spark

The MathWorks Fleet Data

Example Setup at MathWorks

Access & Explore Data: MATLAB & Spark MathWorks Vehicle Fleet

- Challenge Develop and deploy Data Analytics to run on Spark against vehicle fleet data stored on Hadoop
- Solution Use MATLAB tall arrays to develop analytics on the desktop and then scale out to the Spark cluster
- ResultsDeveloped insight and understanding of over 1300 vehicle tripsFuel efficiency performance under real-world driving conditions

Analysis Domains

Statistics

- Summary Statistics
- Regression, ANOVA, Machine Learning

Signal Processing

- Sound quality analysis
- LIDAR analysis

Image Processing

Active Safety

Location/Mapping

- Analyzing GPS Data
- Custom Visualizations

Key Takeaways

- Use the **same MATLAB code**
- Use new MATLAB data types datastore & tall arrays for out of memory data sets
- Scale your work up with Parallel Computing Toolbox on the desktop or the MATLAB Distributed Computing Server (MDCS) on Spark

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See <u>www.mathworks.com/trademarks</u> for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

