

Simulation & Predictive Maintenance Application

28-May-2019

- Listening and Pivoting
- Collaboration
- Flexibility

SIMULATION & PREDICTIVE MAINTENANCE

SAFRAN APPROACH

Assessment **First Artificial** predictive of random Neural analysis of rotary noise effect Network

2016 Q1.

(ANN) to solve Structural Health Monitoring SHM problem

2015 Q1.

in SHM EWSHM-2016 -Congress Bilbao (Spain)

SAFRAN – Simulation History

ANN approach to industrial machines

2017 Q2.

2018 Q1. Marketing development & Customer seeking

Hydraulic Press Hydro-electric generator Variable Frequency Generator (VFG) Automotive tire vulcanizing furnace applications

Today First bench-markings with potential customers and collaborators

2019

Safran Engineering Services / Confidential / Sep-2018

Collaboration

Smart Predictive Maintenance requires for three different Technologies: IT, OT and ET.

- 1. Information Technology to analyze historical Big Data.
- 2. Operation Technology to obtain data in streaming from real process.
- 3. Engineering Technology to identify physical behaviors and simulate run-to-failure data.

Engineering Technology – Digital Twin

- 1. Due to traditional Maintenance Cycles, run-tofailure data are normally missing from collected Data Base.
- 2. Run-to-failure data are necessary for Smart Prediction.
- 3. Digital Twins simulate anomalies to generate these data.
- Missing Historical 4. Digital Twins follow Physical Responses.

6

Damage

Engineering Technology – Engineering Taxonomy

- Digital Twins are applicable to any level of taxonomy.
- The whole corporation can be connected by using Simulated Process.
- Digital Transformation is mandatory for any company for future developments.

Engineering Taxonomy

INDUSTRIAL PROCESS APPLICATION

Hydraulic Press

Methodology

- **1. Preliminary analysis:**
 - Monitor for collecting calibration data.

2. Simulation model:

- Create Parametric Virtual Model with Simulink.
- Correlate with calibration data.
- Generate anomalies (Data Base).

3. Neural Network supervised training:

• ANN generation/training with Deep Learning Toolbox.

4. Implementation of the predictive model:

- Synchronize active monitoring and predictive maintenance model.
- Develop interface for friendly user experience with GUI Layout Toolbox.

9

1. Model of the hydraulic press

- Hydraulic double acting cylinder
- 4 ways 2 positions valve
- Pump
- Safety valve

2. Control

• Controlled by a variable time signal, piloting the main valve.

3. Monitoring

• Only 3 sensors: Position, Up-press, Down-press.

Simulink - 1D Virtual Model

- 1. Anomalies simulation
- Parametric model → scenarios (anomalies progressive growth or abrupt).

2. Anomalies list

- Decrease of Pump rotation speed.
- Delay of the control valve.
- Pressure of the safety valve.
- Valves leakages.
- Bypass between up and down circuits.
- Hydraulic lines leakages.

3. Sensitivity analysis of anomalies

Sensor impact.

4. Damage Qualification

Determine damage boundaries for alerts.

Anomalies

tingfactor=1;	÷	Pump rotating speed modification factor speed*factor
delayfactor=1;	÷	Delay factor to multiply on the valve actuacting sequence time*fac
easesettingfactor=1;	읗	Release valve pressure activation modification factor press*factor
easeregulationfactor=1;	ę	Release valve pressure range modification factor press_range*facto:
easeleakagefactor=1;	ŧ	Release valve leakage area modification factor area*factor
kagefactor=1;	ę	Actuating valve leakage area modification factor area*factor
ivativefactor=1;	ŧ	Actuating valve derivation area modification factor area*factor
nleakagefactor=1;	ę	Pressure down line leakage area modification factor area*factor
eakagefactor=1:	s.	Pressure up line leakage area modification factor area*factor

input.sequence input.pressrel input.pressrel input.pressrel input.valvelea input.valveder

input.pressdow

- 1. Data base
- NN Dataset & Training is developing by switching Input-Output.

2. ANN Generation

• Build the ANN architecture with Deep Learning Toolbox.

3. Training

• Adjust relative neural parameters to reach desired values.

4. Validation

• Iterative process using physical inputs to validate ANN and Virtual Model.

Supervised learning process

GUI Layout Toolbox

SAFRAN SIMULATION APPLICATIONS

LESSONS LEARNT

19

- Listening customers to pivot from SHM to Simulation & Predictive Maintenance.
- Finding collaboration to keep growing knowledge and portfolio.
- Adapt processes to be flexible for customer demands.

ivan.perez-salido@safrangroup.com

