WELCOME HALLO BIENVENUE

SCHÖN, DASS DU DA BIST!

MATLAB EXPO MUNICH 2019

MODULAR BMS DEVELOPMENT

IN RAPID PROTOTYPING OF

AUTOMOTIVE E/E SYSTEMS

KEANE FERNANDES, csi entwiklungstechnik GmbH

Keane Fernandes | Automotive Systems Developer | csi entwicklungstechnik GmbH

WE TALK ABOUT

MODULAR BMS DEVELOPMENT FOR AUTOMOTIVE E/E SYSTEMS

MATLAB EXPO 2019

- More Than Engineers -

- Future Mobility Trends -

- BMS Functionality and Requirements -

- Modeling Approach -
- Algorithms in Action -
- What does the Future Look Like? -

WHO ARE WE?

MORE THAN ENGINEERS

ìIIſ ELECTROMOBILITY WE ARE **A RELIABLE** SMART MOBILITY PARTNER FOR MECHATRONICS **ELECTRONICS** FUNCTIONAL SAFETY ⁺CONSULTING +ENGINEERING ⁺SOFTWARE

WE WILL WORK TOGETHER

TOWARDS YOUR

GOALS WITHOUT MAKING COMPROMISES

ACTUATORS INTEGRATION SENSORS INTEGRATION BATTERY SYSTEM AUTOMOTIVE ETHERNET ELECTRONIC INTEGRATION ALGORITHM/AI FUNCTIONAL SAFETY

ELECTRONICS

SKILLS

ENGENEERS

FROM DUBAI, CHINA, BAVARIA, BADEN AND SWABIA

3-LEVEL DEVELOPMENT APPROACH MOTIVATION

FUTURE

MOBILITY TRENDS

Motivation

Battery Systems are Expensive

- Battery packs make up ~ 35% of total BEV costs
- Useful to come up with a workflow for battery system development to estimate:
 - □ Number of cells, modules, packs
 - Series /Parallel configurations
 - □ Range, capacity
- □ Goal → To come up with computationally inexpensive, yet accurate battery models/system simulations to avoid error realization deep down in the design process

Source: JPMorganChase; BCG analysis

INTRODUCTION

BMS FUNCTIONALITY AND REQUIREMENTS

Introduction

BMS – Basic Idea

- Embedded system → function-built electronics + processing
 - Protects user
 - Protects battery
 - Prolongs life of battery
 - Maintains battery in a functional state
 - **Tells controller how to use pack effectively in real-time**

Figure 1: Battery pack assembly in automobile

Introduction

BMS – Functionality

- Sensing/High Voltage Control Voltage, current, temp. sensing, precharge, detect ground faults;
- Protection overcharge, over-discharge, overcurrent, short circuit, extreme temps.
- Interface Range estimation, communications, data recording/reporting
- Performance Management SOC estimation, power limit computation, cell balancing
- Diagnostics Abuse detection, SOH estimation

Figure 2: Overview of components involved in a BMS

Introduction

Parallel Connected Modules

Series Connected Modules

EQUIVALENT CIRCUIT MODELING

MODELING APPROACH

Modeling Approach

Empirical Modeling

 Equivalent Circuit Models (ECMs) - dynamics of this circuit approximates Li-ion cell behavior

- Accounts for hysteresis voltages
- R₀, C₁, and R₁ represent diffusion processes, functions of SOC, Temperature
- State space representations make implementation of control/estimation algorithms possible

Figure 3: Equivalent Circuit Model Representation

Modeling Approach

Process Overview

CS

PERFORMANCE AND

DIAGNOSTICS

ALGORITHM DEVELOPMENT

Algorithm Development

BMS Measurement Loop

Algorithm Development

Kalman Filtering

- KF based SOC estimation methods are very robust in comparison to voltage/current based methods
- Different implementations of the Kalman Filter possible – Extended Kalman Filter (EKF), SPKF (Sigma Point Kalman Filter), etc.
- Choice depends on complexity/system requirements

Figure 4: Model-based state estimation

Kalman Filtering

SAMPLE USE CASE

ALGORITHMS IN ACTION

OCV vs SOC Correlation

Dynamic Cell Parameters

CS

Voltage Estimation

CS

SOC Estimation using Kalman Filtering

*Tests done on a 30Ah automotive battery cell

OUTLOOK WHAT DOES THE **FUTURE LOOK LIKE?**

Outlook

Physics Based Models (PBMs)

- Empirical approach is good, but physics based cell
 models (PBM) are optimal for developing a robust BMS
- Deal with diffusion, kinetics down to the molecular level
- Computation costs for PBMs are high, research going into obtaining reduced order models (ROM)
- Next generation BMS will be driven by

control/estimation algorithms developed around PBMs

KEANE FERNANDES

AUTOMOTIVE SYSTEMS DEVELOPER

keane.fernandes@csi-online.de +49 171329326812

WIR HABEN

IMMER EIN OFFENES OHR

Desktop Validation

- Use model of cell to create synthetic test data.
- Allows access to "truth" of all cell and algorithm states
- Validity of results limited by the accuracy of cell model.

Algorithm Development

In a Nutshell:

Simple Application to a Battery Electric Vehicle (BEV)

Results

CS

Results

CS