## FitlabGui – Datenanalyse, Systemidentifizierung und Flugeigenschaftsbewertung

Susanne Seher-Weiß Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Flugsystemtechnik

Wissen für Morgen



# Überblick

- Motivation und Programmhistorie
- Datenschnittstelle
- Frequenzgangerzeugung
- Datenvisualisierung und -analyse
  - Zeitbereichsdaten
  - Frequenzbereichsdaten
- Systemidentifizierung
  - Maximum Likelihood und Frequency Response Methode
  - nichtlineare, lineare und Polynom-Modelle
- Flugeigenschaftsanalyse (Hubschrauber)
  - quantitative Kriterien
  - Mission Task Element (MTE) Plots
- Zusammenfassung

| Project Data Model Execution Plotting Heli-HQ Help<br>FitlabGui<br>Version 2.7.2<br>German Aerospace Center DLR<br>Institute of Flight Systems<br>www.dlr.de/flugsystemtechnik | Project Data Model Execution Plotting Heli-HQ Help<br>FitlabGui<br>Version 2.7.2<br>German Aerospace Center DLR<br>Institute of Flight Systems<br>www.dlr.de/flugsystemtechnik | Indap                           | Jui - Thy                                      | giit Data y                           | Analysis and                          | rarameter         | Listimation     |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|-------------------|-----------------|--------------|--|
| FitlabGui<br>Version 2.7.2<br>German Aerospace Center DLR<br>Institute of Flight Systems<br>www.dlr.de/flugsystemtechnik                                                       | FitlabGui<br>Version 2.7.2<br>German Aerospace Center DLR<br>Institute of Flight Systems<br>www.dlr.de/flugsystemtechnik                                                       | roject                          | <u>D</u> ata                                   | <u>M</u> odel                         | Execution                             | P <u>l</u> otting | Heli-H <u>Q</u> | <u>H</u> elp |  |
|                                                                                                                                                                                |                                                                                                                                                                                | Fit<br>Ver<br>Ger<br>Ins<br>WWW | labGui<br>sion 2<br>man Ae<br>titute<br>.dlr.d | .7.2<br>rospace<br>of Flig<br>e/flugs | Center DL<br>ght System<br>ystemtechn | JR<br>ns<br>iik   |                 |              |  |
|                                                                                                                                                                                |                                                                                                                                                                                |                                 |                                                |                                       |                                       |                   |                 |              |  |





### **Motivation**

| Systemidentifizierung | <ul> <li>Erste Programmversion vor 20 Jahren</li> <li>Einfache Weiterverarbeitung der Ergebnisse in MATLAB</li> <li>Ergänzung des FORTRAN-Tools</li> </ul> |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datenanalyse          | <ul> <li>Ersatz f ür FORTRAN-Tool bei Einsatz vor Ort<br/>(Flugversuche)</li> <li>Grafische Benutzeroberfl äche</li> </ul>                                 |
| Flugeigenschaften     | <ul> <li>Separates Tool wurde nicht mehr gepflegt</li> <li>Einzelne Funktionalitäten schon integriert</li> </ul>                                           |



#### Programmhistorie





#### Datenschnittstelle

#### Datenformate:

- Zeitbereichsdaten
  - R-CDF, mat-Dateien, ASCII, Excel
  - benutzereigene Importroutine
  - Auswahl über Datenbank
- Frequenzgänge
  - gemessen: FRD-Objekte
  - analytisch: TF- oder ZPK-Objekte

Datenvorverarbeitung:

- Einheitenkonvertierung: über 25 vordefinierte Umrechnungen
- Kanalarithmetik: beliebige Berechnungen
- Frequenzgänge: integrieren oder differenzieren

| 承 Channel Arithmetic                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channels Filter  Channels Filter  VTAS [kts] 2 VTAS [kts] 3 ALFS [deg] 4 BETS [deg] 6 THETA[deg] 7 PSI [deg] 8 HBAR [kft] 9 NX [g] 10 NY [g] 11 NZ [g] 12 P [deg/s] 13 Q [deg/s] 14 R [deg/s] | Arithmetic Signal List          1 u [m/s]         2 v [m/s]         3 v [m/s]         New         Remove         Name         w         Unit         m/s         Input Signals (s1, s2, s)         2 VTAS         3 ALFS         4 BETS         Arithmetic Formula using s1, s2, s         s1*0.51445.*sin(s2*pi/180).*cos(s3*pi/180)         Postprocessing         None |
|                                                                                                                                                                                               | OK Default Cancel                                                                                                                                                                                                                                                                                                                                                         |



#### Datenschnittstelle

- Manöverdatenbank
  - als Struktur angelegt
  - kann in FitlabGui erzeugt werden
  - numerische Informationen (z.B. Höhe, Geschwindigkeit)
  - Textinformationen (z.B. Manöverart, Bemerkungen)
  - kombinierte Filterung nach allen Informationen

Replace

Transfer Maneuvers to Time Section Selection List

Append

Cancel

Time Section Selection





### Frequenzgangerzeugung

Frequenzgang

- beschreibt die Systemantwort in Amplitude und Phase als Funktion der Anregungsfrequenz
- charakterisiert das Eingangs-Ausgangsverhalten vollständig (nichtparametrisches Modell)

#### Methoden

- klassische Methode mit Segmentierung, Fensterung und MISO (multi-input single-output) Konditionierung in zwei Varianten
- Local Polynomial Methode





- Zeitbereichsdaten
  - Quick Plot
  - Report Plot
  - Cross Plot
- Frequenzgänge
  - Quick Bode Plot
  - Report Bode Plot
  - Spectral Plot
  - Mismatch Envelope Plot
- Frequenzbereichsdaten
  - Quick Plot Frequency Domain
  - Report Plot Frequency Domain

| roject Data Model Execution                                                                                          | Plotting Heli-HQ Help                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| FitlabGui<br>Version 2.7.2<br>German Aerospace Center DL<br>Institute of Flight System<br>www.dlr.de/flugsystemtechn | Quick Plot Time Domain<br>Report Time Domain<br>Cross Plot<br>Hardread Plot<br>Quick Bode Plot<br>Report Bode Plot<br>Spectral Plot |  |
| Project opened:<br>D:\Fitlab\trunk\fitlabDemo\de                                                                     | Mismatch Envelope Plot                                                                                                              |  |
| demo_2ndOrder_fResp - Linear                                                                                         | Report Frequency Domain                                                                                                             |  |
|                                                                                                                      |                                                                                                                                     |  |



- Zeitbereichsdaten
  - Quick Plot
  - Report Plot
  - Cross Plot
- Frequenzgänge
  - Quick Bode Plot
  - Report Bode Plot
  - Spectral Plot
  - Mismatch Envelope Plot
- Frequenzbereichsdaten
  - Quick Plot Frequency Domain
  - Report Plot Frequency Domain





- Zeitbereichsdaten
  - Quick Plot
  - Report Plot
  - Cross Plot
- Frequenzgänge
  - Quick Bode Plot
  - Report Bode Plot
  - Spectral Plot
  - Mismatch Envelope Plot
- Frequenzbereichsdaten
  - Quick Plot Frequency Domain
  - Report Plot Frequency Domain





- Zeitbereichsdaten
  - Quick Plot
  - Report Plot
  - Cross Plot
- Frequency Responses
  - Quick Bode Plot
  - Report Bode Plot
  - Spectral Plot
  - Mismatch Envelope Plot
- Frequenzbereichsdaten
  - Quick Plot Frequency Domain
  - Report Plot Frequency Domain





- Zeitbereichsdaten
  - Quick Plot
  - Report Plot
  - Cross Plot
- Frequency Responses
  - Quick Bode Plot
  - Report Bode Plot
  - Spectral Plot
  - Mismatch Envelope Plot
- Frequenzbereichsdaten
  - Quick Plot Frequency Domain
  - Report Plot Frequency Domain





### Systemidentifizierung



Bestimme die Modellstruktur und die Modellparameter  $\varphi$  so, dass eine optimale Übereinstimmung von Modellantwort y und gemessener Systemantwort z erreicht wird.



# Systemidentifizierung – Modelle

| Nichtlineare Modelle                         | <ul> <li>benutzerdefiniertes m-File oder C<sup>++</sup>-File</li> <li>liefert Ausgangsvektor als Funktion der Zeit, der Eingänge und<br/>der unbekannten Parameter</li> <li>kann Aufruf von Simulink-Modell enthalten</li> </ul> |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lineare Modelle                              | <ul> <li>benutzerdefiniertes m-File</li> <li>liefert Systemmatrizen und ggf. Totzeiten als Funktion der<br/>unbekannten Parameter</li> <li>Simulation mit Control System Toolbox</li> </ul>                                      |
| Polynommodelle für<br>Übertragungsfunktionen | <ul> <li>direkt über ein Panel definiert</li> <li>Zähler-/Nennerpolynom oder Pole/Nullstellen</li> <li>Behandlung mit Control System Toolbox</li> </ul>                                                                          |



# Systemidentifizierung – Methoden und Optimierung

| Maximum Likelihood Methode | <ul> <li>Zeitbereich:<br/>Minimierung der Fehler in den Ausgangsgrößen</li> <li>Frequenzbereich:<br/>Anpassung der Ausgangsspektren</li> </ul> |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Response Methode | <ul> <li>Anpassung von Frequenzgängen</li> <li>Minimierung der Amplituden- und Phasenfehler</li> <li>optionale Kohärenzgewichtung</li> </ul>   |
|                            | · optionale Ronarenzgewichtung                                                                                                                 |
| Optimierung                | <ul> <li>Gauß-Newton oder Subplex Verfahren</li> <li>Optimization Toolbox (wenn vorhanden)</li> </ul>                                          |



# Systemidentifizierung – Anwendungsbeispiele



Raumgleiter



Segelflugzeug

Flächenflugzeuge

Hubschrauber



Pilot



ACT/FHS



Modell





Wirbelschleppen



Tragschrauber





# Flugeigenschaftsanalyse (Hubschrauber)



#### **Mission Task Element Plots**

- Hover
- Vertical Maneuver
- Lateral Reposition
- Depart/Abort
- Hovering Turn
- Slalom
- Pirouette
- Load Placement

Extra Routinen

- RMS / Cutoff Frequency
- Attack Parameter



#### Flugeigenschaftsanalyse – Quantitative Kriterien

- Panel zur Auswahl von
  - Achse, Geschwindigkeit, Regler, ...
  - ggf. Methode
  - Daten (Zeitbereich oder Frequenzgänge)

| 📣 Bandwidth Crite            | ion               |          |
|------------------------------|-------------------|----------|
| Axis                         | _ Speed           | Command  |
| Pitch                        | Hover / Low Speed | Rate     |
| 🔘 Roll                       | Forward Flight    | Attitude |
| ⊚ Yaw                        |                   |          |
|                              |                   |          |
| Frequency Respons            | 88                |          |
| Dion_TO_Theta<br>Diat_TO_Phi |                   | <b>^</b> |
| Dped_10_Psi_nover            |                   |          |
|                              |                   |          |
|                              |                   |          |
| Start                        | Default           | Cancel   |

- Ergebnisse
  - numerische Ergebnisse in FitlabGui Fenster und Logdatei
  - Plots mit Grenzen aus ADS-33





#### Flugeigenschaftsanalyse – Mission Task Element Plots

- spezifisch für den ACT/FHS des DLR
- korrespondieren mit MTE Displays
- Zeitverläufe mit Manöverphasen, Steueraktivität, Hubschrauber- & Lastposition
- Grenzen für "desired" und "adequate performance"





### Zusammenfassung

FitlabGui = ein integriertes Tool für

- Datenvorverarbeitung
- Frequenzgangerzeugung
- Datenvisualisierung und -analyse
- Systemidentifizierung
- Flugeigenschaftsanalyse von Hubschraubern

Für weitere Informationen: susanne.seher-weiss@dlr.de

#### PS:

Angebote für Bachelor-/Masterarbeiten, Promotionsstellen, etc. unter www.dlr.de/jobs

