MATLAB EXPO 2019

Optimizing Robotic Systems with Simscape

Eva Pelster Application Engineer, MathWorks

Optimizing Robotic Systems with Simscape

In this session

 Simscape and MATLAB enable engineers to combine CAD models with multidomain, dynamic simulation

In this session

 Simscape and MATLAB enable engineers to combine CAD models with multidomain, dynamic simulation

In this session:

 Simscape and MATLAB enable engineers to combine CAD models with multidomain, dynamic simulation

- Results you can achieve:
 - 1. Optimized mechatronic systems
 - 2. Improved quality of overall system
 - 3. Shortened development cycle

Why Combine CAD and Multidomain, Dynamic Simulation?

- Fewer iterations on mechanical design because requirements are refined
- Fewer mechanical prototypes
 because mistakes are caught earlier
- Reduced system cost because components are not oversized
- Less system downtime because system is debugged using virtual commissioning

Design Challenge System:

Challenge: Select motors and define controls for robot and conveyor belts.

Solution: Import CAD model into Simscape; use simulation to define actuator requirements and control logic

- 1. Import CAD Model
- 2. Determine Motor Requirements
- 3. Integrate Electrical Actuators
- 4. Minimize Power Consumption
- 5. Develop Control Logic

Kuka Robot

- 5 degrees of freedom, and a gripper
- Key advantage of Onshape: Ability to directly define joints
 - Exact mapping to constraints used in multibody simulation
- System engineer reuses mechanical design in dynamic simulation

1. Import Model from CAD

- Convert CAD assembly to dynamic simulation model for use within Simulink
 - Mass, inertia, geometry, and joints

2. Determine Motor Requirements

100

50

0

-50

Torque (Nm), Force (N)

- Define and run a set of tests
 - Maximum payload, speed
 - Worst case friction levels
 - Full range of movement
- Use dynamic simulations to calculate required torque and bearing forces
- If design changes, automatically rerun tests and re-evaluate results

📣 MathWorks[.]

3. Integrate Electrical Actuators

- Add motors, drive circuitry, gears, and friction
- Choose motors based on torque requirements
- Assign parameters directly from data sheets

RevolutePivotBicep

	251601
Motor Data	
Characteristics	
Terminal resistance Ω	0.978
Terminal inductance mH	0.573
Torque constant mNm / A	33.5
Speed constant rpm / V	285
Speed / torque gradient rpm / mNm	8.32
Mechanical time constant ms	11.8
Rotor inertia gcm ²	135
Electrical Torque Mechanical	

Electrical Torque	Mec	hanical	
Model parameterization:		Circuit	parameters 🝷
Armature resistance:		0.978	Ohm ~
Armature inductance	ce:	0.573	mH ~
Torque constant:		33.5	mN*m/A ~

Challenge: Identify arm trajectory that minimizes power consumption.

Solution: Use dynamic simulation to calculate power consumption, and use optimization algorithms to tune trajectory.

Accelerate Design Iterations Using Parallel Computing

This optimization task required nearly 2000 simulations. Running simulations in parallel speeds up your testing process.

5. Design Control Logic for Arm and Conveyor Belts

- Sense quantities within model that govern system events
- Design logic using a state chart
- Use outputs of logic to control models of system components

MATLAB EXPO 2019

5. Design Control Logic for Arm and Conveyor Belts

5. Design Control Logic for Arm and Conveyor Belts

Test Production Control Software

- Automatically convert algorithms to production code
 - C Code, IEC 61131-3 Code
- Incrementally test the effect of each conversion step
 - Fixed-point math
 - Latency on production controller
- Use the same plant model
 - Test without expensive hardware prototypes

📣 MathWorks

What we have shown

- Determine requirements for actuation system
- Minimize power consumption using optimization algorithms
- Design, test, and verify control logic behavior with dynamic simulation

MATLAB EXPO 2019

D 1 1 1 1

How we did it

- Convert CAD assemblies into dynamic simulation models with Simscape Multibody
- Add electric actuators with Simscape and control logic using Stateflow
- Perform dynamic simulation in Simulink
- Optimize system using MATLAB

MATLAB EXPO 2019

Summary

- Simscape and MATLAB enable engineers to combine CAD models with multidomain, dynamic simulation
- Results:
 - 1. Optimized mechatronic systems
 - 2. Improved quality of overall system
 - 3. Shortened development cycle

