

Simulation of Precise and Safe Landing near a Plume Source on Enceladus

Kostas Konstantinidis, Julian Adler, Manuel Thies, Roger Förstner Institute for Space Technologies and Space Applications (ISTA), Bundeswehr University, Munich

MATLAB EXPO, Munich, June 26th 2018

Motivation - Enceladus Lander mission

Shielded Electronics

- **ISTA** involved in EnEx-1 project (2012-2015) for **Enceladus Lander mission design**
- Critical technology identified for landing mission: Advanced landing GN&C

condensation and release of latent heat

> vapor + salty liquid droplets

> > top of

water table

Porco et al., 2014

geyser (vapor
+ ice particles)

K. Konstantinidis et al., A lander mission to probe subglacial water on Saturn's moon Enceladus for life, Acta Astronaut. 106 (2015) 63–89

Low Gain Antenna

Landing on the south pole of Enceladus

et al., 2010

Topography

- "V" shaped canyons, 100–150 m high, 200–250 m deep
- Bottom: 50–100 m wide
- floor is interspersed with obstacles

Terrain texture

- plume fallout deposit layer up to 10s of meters near plumes
- Also exposed icy crust

Thermal environment

Concentrated hotspots around plume sources (~10 m)

Albedo of Enceladus: 0.99

Polar region

- low sun elevation angles
- canyon floors often in darkness

Planetary protection

possible direct access to ocean, PP more strict than e.g. Mars special regions

Lander GN&C operations

Lander GN&C system

INSTITUTE OF SPACE TECHNOLOGY & SPACE APPLICATIONS ^{der Bundeswehr} Universität 🔬 München

Current research - GN&C for Enceladus Landing

June 26th, 2018

Terrain and sensor simulation

2. Delaunay triangulation

3. Terrain illumination

TRN-aided inertial navigation

1. Lander nav. state J. Sola, 2007 $\mathbf{\hat{x}}_k = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$ $\mathbf{P}_k = egin{bmatrix} \Sigma_{pp} & \Sigma_{pv} \ \Sigma_{vp} & \Sigma_{vv} \end{bmatrix}$ 2 3 **2**. Prediction step $\hat{\mathbf{x}}_k = \mathbf{F}_k \hat{\mathbf{x}}_{k-1} + \mathbf{B}_k \mathbf{u}_k$ Sensor observations $\mathbf{P}_{k} = \mathbf{F}_{k} \mathbf{P}_{k-1} \mathbf{F}_{k}^{T} + \mathbf{Q}_{k}$ Control -Control + noise forces meas. + noise 3. Correction step $\hat{\mathbf{x}}_{k}^{\prime} = \hat{\mathbf{x}}_{k} + \mathbf{K}^{\prime} (\overrightarrow{\mathbf{z}_{k}} - \mathbf{H}_{k} \hat{\mathbf{x}}_{k})$ Prediction Correction Nav. state + **IMU** motion equations covariances step step $\mathbf{P}'_k = \mathbf{P}_k - \mathbf{K}' \mathbf{H}_k \mathbf{P}_k$ Extended $\mathbf{K}' = \mathbf{P}_k \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_k \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$ **Kalman Filter** bzarg.com

MATLAB EXPO, Munich June 26th, 2018

4

Sensor observations

Camera: Simultaneous Localization and Mapping (SLAM)

Hazard Detection and Avoidance – Fuzzy reasoning

Hazard Detection and Avoidance – Landing site evaluation

Guidance – Convex guidance (G-FOLD)

(3)

(4)

Problem 1 Non-Convex Minimum Fuel Planetary Landing Problem

$$\begin{aligned} \max_{t_f, \mathbf{T}_c} m(t_f) & \text{subject to:} \\ \dot{\mathbf{x}}(t) &= A\mathbf{x}(t) + B\left(\mathbf{g} + \frac{\mathbf{T}_c(t)}{m}\right) \\ \dot{m}(t) &= -\alpha \|\mathbf{T}_c(t)\| \\ \mathbf{x}(t) &\in \mathbf{X} \quad \forall t \in [0, t_f], \\ 0 &< \rho_1 \leq \|\mathbf{T}_c(t)\| \leq \rho_2, \quad \hat{\mathbf{n}}^T \mathbf{T}_c(t) \geq \|\mathbf{T}_c(t)\| \cos \theta, \\ m(0) &= m_0 \\ \mathbf{r}(0) &= \mathbf{r}_0, \quad \dot{\mathbf{r}}(0) &= \dot{\mathbf{r}}_0, \\ \mathbf{r}(t_f) &= 0, \quad \dot{\mathbf{r}}(t_f) &= \mathbf{0}. \end{aligned}$$

Acikmese et al.,

SPACE TECHN

- **Optimization objective:** minimize propellant used
- Dynamics
 - Constraints
- (5) Initial and final conditions
 (6)
- (7) (8) **Convex Optimization:** G-FOLD
- (9) algorithm

Landing simulation tool structure

Visual navigation simulation

Hazard Detection and Avoidance simulation

Guidance Simulation

Demonstation of G-FOLD capabilities

Modified reachability ellipse verification

Example challenging trajectory and thrust arc

Summary and future work

What we did so far

- Created *tool to simulate landing* on Enceladus
- Incorporating all functions necessary:
 - Terrain Relative Navigation
 - Hazard Detection and Avoidance
 - Guidance
 - Realistic sensor input simulation

Work remaining to be done

- Finalize tool development
- Monte Carlo simulations and sensitivity analyses to *verify fulfilment of landing requirements*
- Focus on reliability: apply fault management methods and simulate deduced fault scenarios
 Future work
- Test landing on quadrocopter testbed under development in ISTA

Thank you! Questions?

Contact: <u>k.konstantinidis@unibw.de</u>