

Auslegung der Tintenversorgung einer industriellen Ink-Jet-Druckmaschine mittels Simscape

Matlab Expo 2018

Dr. Nicklas Norrick, 26.06.2018

1. Vorstellung Heidelberger Druckmaschinen AG

- 2. Grundlegendes zu Ink-Jet-Druckmaschinen
- 3. Modellierungsansatz
- 4. Beispielhafte Aufgaben und Ergebnisse
- 5. Zusammenfassung

Heidelberg. Kennzahlen und Fakten

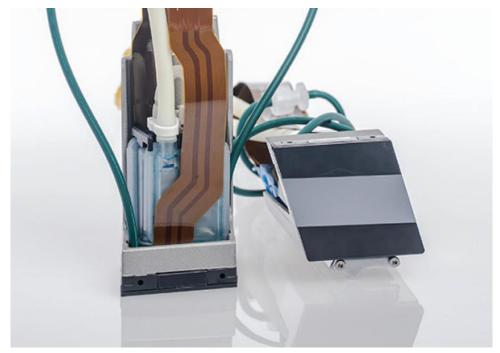
Heidelberg. Maschinenübersicht

- Bogenoffsetdruckmaschinen
 - Verpackungen

- Akzidenzdruck

- Verpackungen
- Etiketten

- Digitaldruck auf dreidimensionale Objekte
 - Bälle
 - Helme
 - Autoteile
 - ...

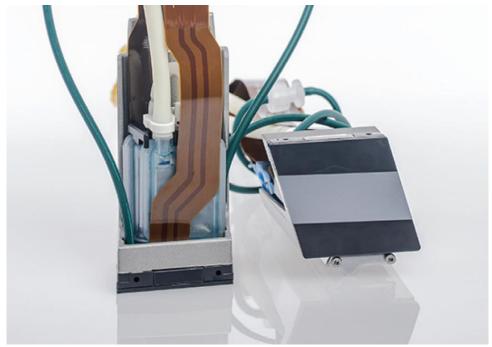


- 1. Vorstellung Heidelberger Druckmaschinen AG
- 2. Grundlegendes zu Ink-Jet-Druckmaschinen
- 3. Modellierungsansatz
- 4. Beispielhafte Aufgaben und Ergebnisse
- 5. Zusammenfassung

Ink-Jet-Druckmaschinen

- Druckbild wird pixelweise aufgebaut
 - → Tropfengröße ~ Picoliter
- Jedes Pixel wird durch eine Druckdüse angesteuert
 - → Düsengröße ~ Micrometer
- Bei 1200 dpi, 1000 mm Bahnbreite und 7 Farben arbeiten 330000 Düsen mit einer Jetting-Frequenz von 30 kHz im Akkord
- Bogen oder Bahn wird in der Regel unter dem stehenden Kopf vorbeigeführt
- Der Prozess stellt hohe Anforderungen an die Versorgung der Druckköpfe mit Tinte bezüglich
 - Temperatur
 - Reinheit (kein Schmutz, keine Luft)
 - Druck
 - Volumenstrom

Quelle: Fujifilm


Ink-Jet-Druckmaschinen

- In der Regel als Kreislauf ausgeführt, vergleichbar mit dem Common-Rail-Prinzip beim Dieselmotor
- Die Tintenversorgung ist ein mechatronisches System aus Hydraulik, Pumpen, Sensoren und Regelung

Auslegung, Vergleich von Varianten, Testen von Regelparametern nur noch mittels Simulation beherrschbar

Quelle: Fujifilm

© Heidelberger Druckmaschinen AG | Tintenversorgung Simscape

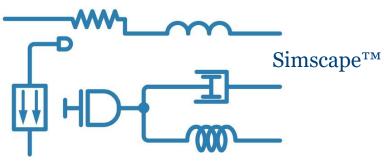
- 1. Vorstellung Heidelberger Druckmaschinen AG
- 2. Grundlegendes zu Ink-Jet-Druckmaschinen
- 3. Modellierungsansatz
- 4. Beispielhafte Aufgaben und Ergebnisse
- 5. Zusammenfassung

Modellierungsansatz

Klassische Vorgehensweise:

- Aufstellen der Differentialgleichungen
- Aufbau mit Simulink-Blöcken, eigenen Bibliotheken

Vorteile:


- Hohes Verständnis der beschreibenden Gleichungen
- Maximale Flexibilität

Nachteile:

- Zeitaufwand
- Fehler z.B. durch falsche Einheiten

Neue Vorgehensweise:

Physikalische Modellierung

Vorteile:

- Schneller Einstieg durch vorhandene Blöcke
- Physikalische, einheitenkorrekte Verbindungen

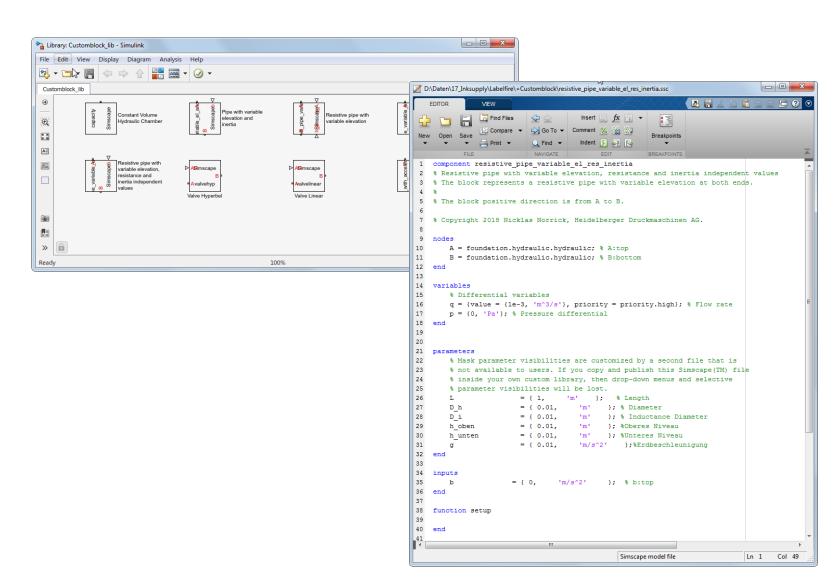
Nachteile:

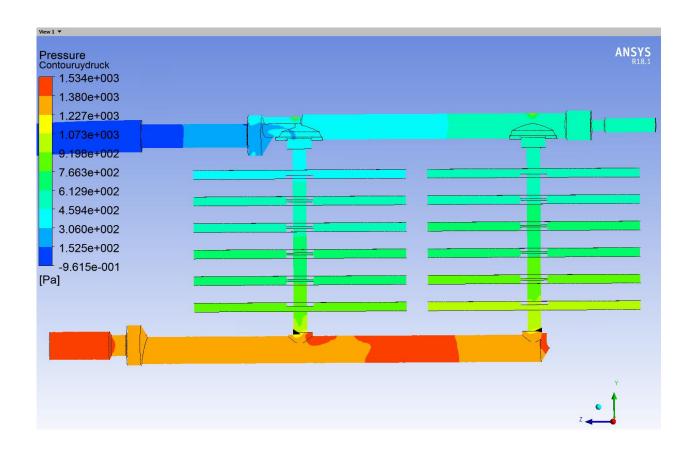
- eingeschränkte Flexibilität bei Standardblöcken
- Fehler durch mangelndes physikalisches Verständnis

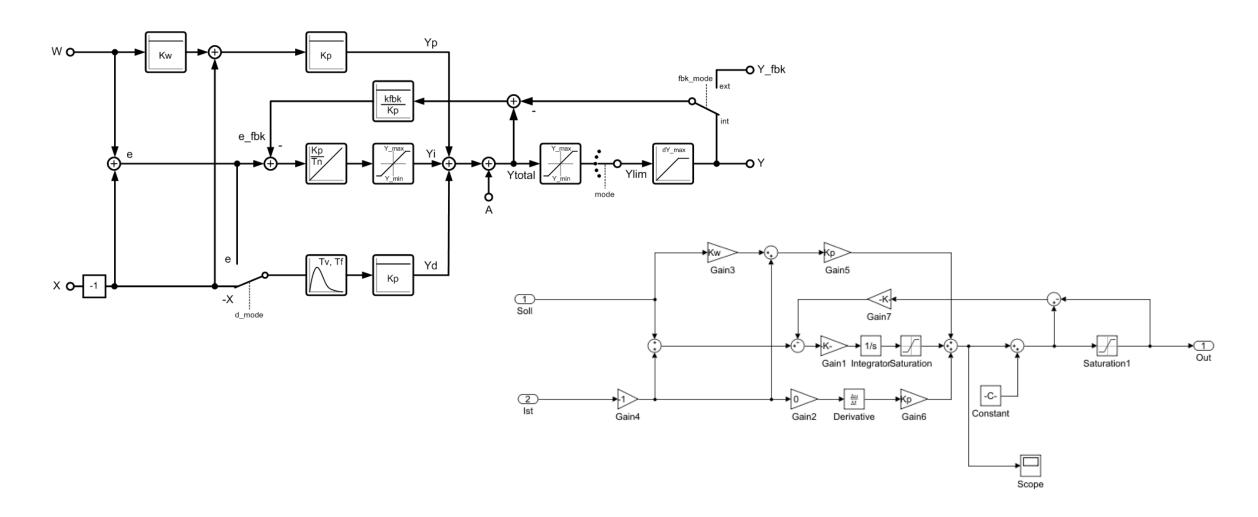
Modellierungsansatz in Simscape™ – Trennung der Zeitskalen

- → Zeitskala ca. 10 ms
- → Bibliotheken: **Hydraulic** und **Mechanical**
- → Druckregelung über Simulink-Blöcke mit abgebildet
- → Eigene Blöcke für Spezialkomponenten
- → Numerische Strömungssimulation zur detaillierten Parameterermittlung

Temperaturverhalten


- → Zeitskala ca. 1 s
- → Bibliothek: **Thermal Liquid**
- → Temperatur- und Druckregelung über Simulink-Blöcke mit abgebildet
- → Eigene Blöcke für Spezialkomponenten
- → Numerische Strömungssimulation inklusive thermischem Zeitverhalten zur detaillierten Parameterermittlung


- Einbindung zusätzlicher Funktionen mit der Simscape Language
- Einfache Syntax
- Internes Teilen von Blöcken über gemeinsam genutzte Library


Modellierungsansatz – Detaillierte Simulation von Einzelkomponenten mittels CFD (ANSYS® Fluent)

- Überprüfung von Annahmen, analytischen Rechnungen und Datenblattangaben
- Feine Auflösung von komplexen Strukturen
- Modellreduktion

Modellierungsansatz – Detaillierte Abbildung der Reglerstruktur

Modellierung sans atz-Workflow

- 1. Modellaufbau in Simulink®/Simscape™ (aktuell teils Handarbeit, teils skriptbasiert)
 - → alle Parameter als Variablen
 - → Run-Time Parameter (sinnvoll) wählen
- 2. m-File zur Parametrierung
- 3. Modellaufruf je nach Untersuchungszweck (z.B. Optimierung)


- 1. Vorstellung Heidelberger Druckmaschinen AG
- 2. Grundlegendes zu Ink-Jet-Druckmaschinen
- 3. Modellierungsansatz
- 4. Beispielhafte Aufgaben und Ergebnisse
- 5. Zusammenfassung

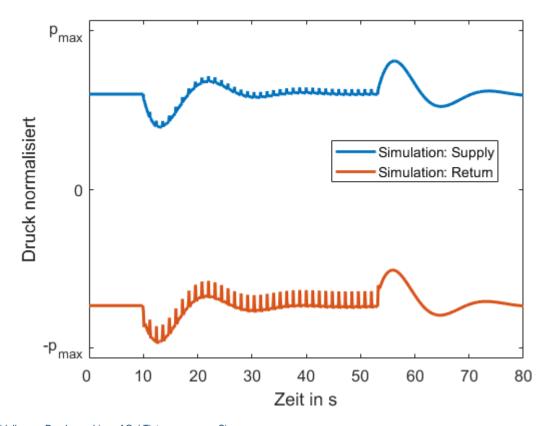
Schema der Tintenversorgung

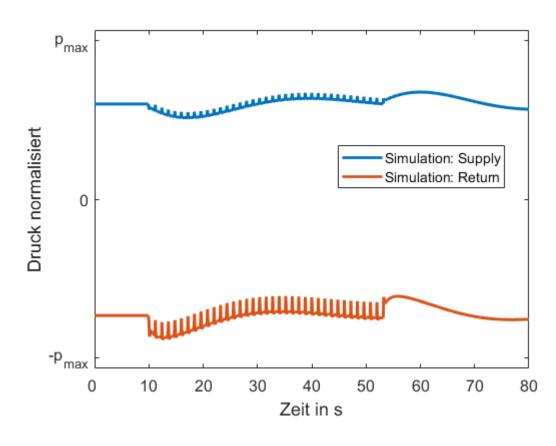
• Aufbau analog zum Common-Rail-Prinzip beim Dieselmotor.

 Je nach Fragestellung kann der Einfluss verschiedener Komponenten vernachlässigt oder vereinfacht werden.

Beispielhafte Aufgaben

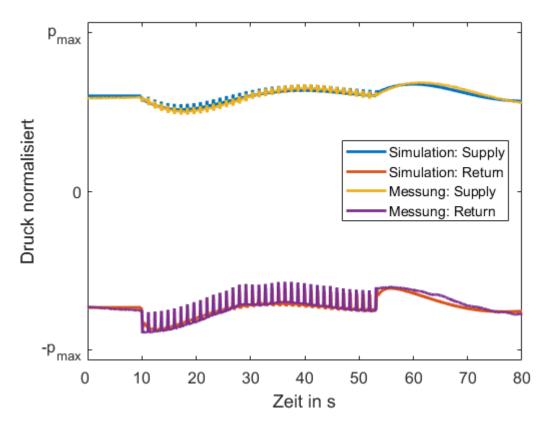
- 1. Dimensionierung einzelner Komponenten
 - → Pumpen
 - → Rohrleitungen und Schläuche
 - → hydraulische Kapazitäten
- 2. Prognose von Systemverhalten und -robustheit, z.B.
 - → Verstopfung eines Filters
 - → Unterschiedliche Stoffwerte (Tintenchargen)
 - → Unterschiedliche Umgebungsbedingungen (Temperatur)
- 3. Testen neuer Regelstrategien, Optimierung von Regelparametern


Beispielhafte Ergebnisse


Anregung: Tintenentnahme durch Druckjob:

Vor Optimierung Kapazität

Nach Optimierung Kapazität


Beispielhafte Ergebnisse

Anregung: Tintenentnahme durch Druckjob:

Validierung anhand von Versuchsdaten:

Simulation als Ergänzung und Unterstützung der Messung:

- Auswahl geeigneter Messstellen
- Entwurf von Versuchsplänen
- Sensitivitätsanalyse

- ...

- 1. Vorstellung Heidelberger Druckmaschinen AG
- 2. Grundlegendes zu Ink-Jet-Druckmaschinen
- 3. Modellierungsansatz
- 4. Beispielhafte Aufgaben und Ergebnisse
- 5. Zusammenfassung

Zusammenfassung

- Simscape[™] als effektives Werkzeug zur Beschreibung komplexer mechatronischer Systeme
- Steile Lernkurve durch physikalische Modellierung
- Die frühe Einbindung der Simulation in den Produktentwicklungsprozess spart Zeit und Versuchskosten
- Simulation als Ergänzung und Unterstützung von Messungen
- Ausblick: automatische Modellerzeugung für Variantenbildung

