

Simulationbased Development of ADAS and Automated Driving with the Help of Machine Learning

Dr. Andreas Kuhn

📣 MathWorks®

MATLAB EXPO 2017 DEUTSCHLAND

Fields of Competence

- Artificial Intelligence
- Data Mining
- Big Data Analytics
- Modeling and simulation
- Predictive Model based
 Control
- Distributed Control
- Signal Classification
- Swarm Intelligence

ANDATA

ARTIFICIAL

INTELLIGENCE

- (Embedded) Software
- Decision Support Systems
- Robustness and Complexity
 Management

Big Data Analytics & AI & Simulation

Automotive safety

Anomalies and Incident Detection

Failure prediction

Data driven development process

IN WHITEE I

Vehicle and traffic automation

(Mobile) Robotics Automated Guided Vehicle

Partner

MathWorks

Contact: A-5400 Hallein, Hallburgstraße 5, +43 6245 74063, office@andata.at, www.andata.at

Industry 4.0,

Digitalization

Advanced Driver Assistant Systems and Automated Driving

Avoiding collisions by informing, warning, braking, steering, automated manoeuvres

- Which sensors are necessary for valid decisions in automated driving?
- What sensefull functions can be carried out with a given set of sensors?

Problem Statement

- Number, diversity and complexity of safety systems increases steadily
- Do we still underestimate the complexity of integral safety systems?
- What is the minimum/best set of test cases to sufficiently describe/specify/evaluate the system behaviour?
- How can we be sure?

- Human beings are part of the control loop now!
- Systems have to anticipate the anticipation of other traffic participants
- It's about the difference between subjective and objective danger rather than about objective danger only

- The problem is of stochastic nature!
- > There are a lot of possibilities how a given situation can evolve

- The problem is mathematically instable!
- Even small changes in the initial/boundary conditions may lead to completely different collision conditions

- Conflicting requirements
- Incomplete information

Consequences

- Taking a **probabilistic/stochastic** point of view
- Consequent **Top-Down** instead of Bottom-Up **system development**
- Analysis of **field effectiveness** instead of test effectiveness
- Increasing integration of simulation based development (scenario based approach)
- Broad application of data driven approaches (Big Data Analytics and Artificial Intelligence)
- Combined into Integral Development Process
- Almost completely carried out in MATLAB

The Core Principle for Algorithm Development

• Example based represenation of functional requirements

10

Example Based Representation of Functional Requirements

Data Acquisitions from Fleet Data

Scenario-Management and Development/Approval of Actions

Action Specification Based on "Decision Points" with "Big Data Analytics"

Folding Various Decision Variables (e.g. collision probabilities)

© 2017, ANDATA, several granted and pending patents

Effectiveness Rating von Different System Variants

Numerical Conflict Analysis

What is a requirements conflict for a control algorithm?

In different situations, which induce the same sensor image, different actions are desired!

ANDATA Solution Traffic Control

100

50

West.

South East North

20

20

100

Problem description

Model based predictive control of traffic flows

Solution approach

- Scenario- & data based specification of function ٠
- Functional algorithms with Artificial Intelligence
- Multi-level, stochastic simulation
- System-Engineering
- Pattern recognition
- Machine Learning
- Virtual sensors ٠
- Effectivness rating .

Tools

- MATLAB .
- Neural Networks Toolbox .
- Statistics and Machine Learning Toolbox .
- Div. ANDATA Toolboxen für MATLAB .

ANDATA Solution Robotics, Production and Assembly

Problem description

 Development of control algorithms for mobile robots in industrial environments

Solution approach

- Scenario based approaches
- Sensor signal modeling
- Kinematic simulation
- "Intelligent" algorithms for mapping, localization, path planning

Tools

- MATLAB, Simulink/Stateflow
- Neural Networks Toolbox
- Statistics and Machine Learning Toolbox
- MATLAB Compiler, MATLAB Coder
- var. ANDATA Toolboxes for MATLAB

ANDATA Software and Tools

- Data collection, preparation and normalization
- Data cleaning
- Sensor models
- Signal preparation
- Requirements definition ("labelling", etc.)

- Data analysis
- Training, adaption and evaluation of Machine Learning models
- Meta modelling, feature selection, etc.

- Scenario management
- Multilevel stochastic simulation
- · Execution of distributed simulations

- Data plausibilization
- · Anomalies and incident detection

•

. . .

Summary

- Scenario Management
- Operational Requirements Management
 - Conflict analysis
 - Proof of feasibility of the requirements
- Sensor concept evaluation and rating
- Effectiveness rating of system concept

- Uniform, integral product development process for traffic automation
- Design of experiments (What is the minimum test set to assure safe system functionality?)
- Virtual sensors, e.g. for estimation of collision probabilities
- Fast prototypical implementation
- Conform separation between specification and implementation
- Anomalies detection as quality assurance for simulation
- Extreme Development Procedures
 - Extremely quick, efficient, effective

© 2017, ANDATA, several granted and pending patents

 Carried out completely in MATLAB

Conclusion

Extreme product development procedures with **Big Data Analytics** and Artificial Intelligence are not research anymore!

Just do it! Tools are available for decades now
 MATLAB / Simulink / Neural Networks Toolbox

Thanks, for listening!

The singularity is near, let's be prepared!

ANDATA GmbH

Dr. Andreas Kuhn Tel: +43 6245 74063 Email: office@andata.at Web: www.andata.at