

MATLAB EXPO 2016

Interoperabilität von Simulatoren aus Software Engineering Sicht

10.05.2016

Prof. Dr.-Ing. R. Finsterwalder
Ingenieurinformatik
Universität der Bundeswehr München

Projekt MASTER:

Entwicklung eines modularen, re-konfigurierbaren Fahr/Flugsimulators, der sich sowohl für den Einsatz im Rahmen der Lehre als auch für angewandte Forschung und Entwicklung eignet.

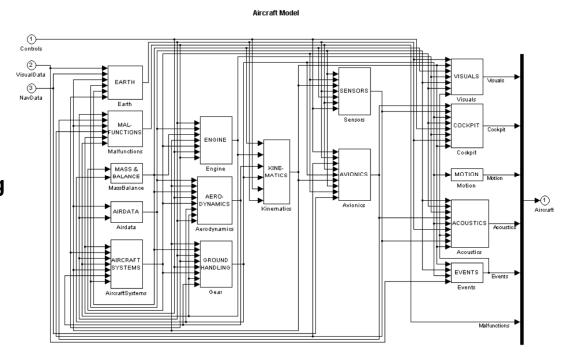
Interoperabilität/Vernetzung von dislozierten Simulatoren

- (Flug-)Simulatoren sind komplexe technische Anlagen
- Vielzahl von Komponenten (Dynamiksimulation, Sichtsystem, Daten-IO, Steuerkraftsystem, Audiokommunikation, ...)
- Heterogenität der Komponenten (Software/Betriebssystemspezifisch, Hardware-spezifisch)
- Komplexität erfordert strikte Modularisierung (Soft- und Hardware)
- Implementierung der Komponenten in Form von unabhängigen und austauschbaren Rechnerprozessen (Modulen)
- Gesamtsimulation = Verteilte Simulation = Summe
 Einzelsimulationen

- Heterogenität der Komponenten
 - Windows, Linux, QNX, VxWorks
 - PC, Arduino Mikrocontroller, Raspberry PI, B&R X20 CPU
- Echtzeit
 - Schnelle Prozesse (Steuerkraftsystem)
 - Sicherheitskritische Prozesse (Bewegungssystem)
 - Langsame Prozesse (Anzeige Fluginstrumente)
- Komplexität erfordert strikte Modularisierung
 - Interoperabilität der Komponenten erfordert klar definierte Prozessschnittstellen
 - Shared Memory, UDP, TCP, CAN, OSC

- Vielzahl anspruchsvoller (Teil-)Aufgabenstellungen
- Detailliertes Systemwissen und IT-Wissen erforderlich
- Manuelle Low-Level Programmierung ist zeitaufwendig und fehleranfällig
- Applikationsingenieur verfügt über detailliertes Systemwissen, aber ist i.d.R. KEIN IT-Spezialist
- Zahlreiche Entwurfszyklen notwendig (Modell Regler Echtzeitcode – Test)
- Einsatz einschlägiger High-Level Entwicklungswerkzeuge
- Bereitstellung wiederverwendbarer Bausteine für Prozesskommunikation
- automatische Codegenerierung

Modul Flugdynamik:


Entwicklung von Simulationsmodellen mit MATLAB/Simulink®

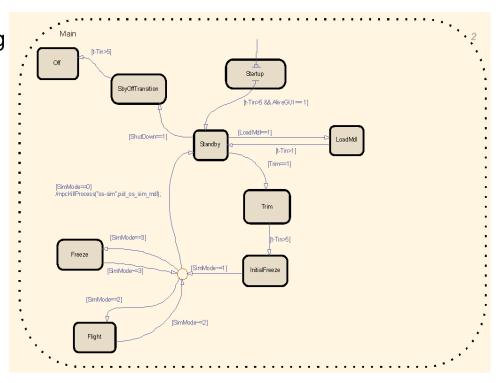
bisher:

Codierung mit nativen Programmiersprachen (C, C++)

heute:

- problemangepasste grafische oder textuelle Modellbeschreibung mit Modellierungssprache
 wiederverwendbare Modelle
- komfortable Funktionstests
- automatische Code-Generierung
- kurze Entwicklungszeit

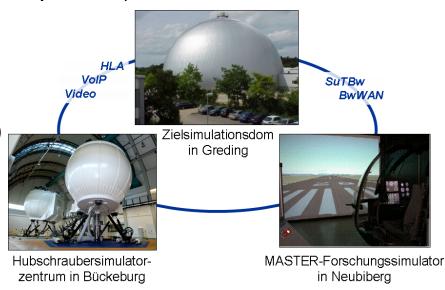
Modul Anlagensteuerung:


Entwicklung einer Anlagensteuerung der Simulator-Anlage mit MATLAB/Stateflow®

bisher:

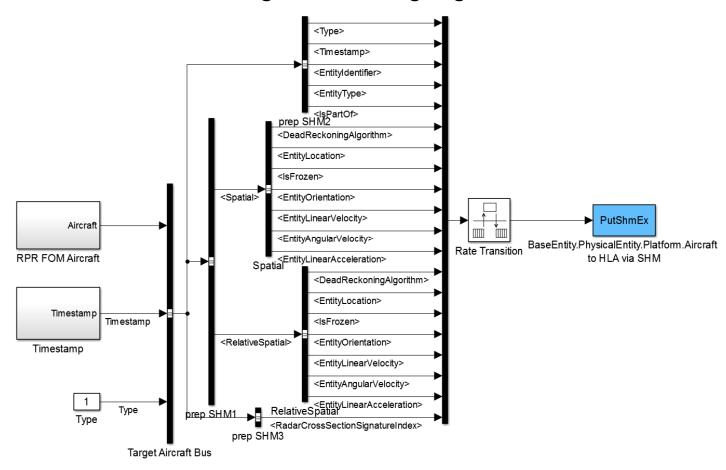
Codierung mit nativer Programmiersprache (C, C++)

heute:

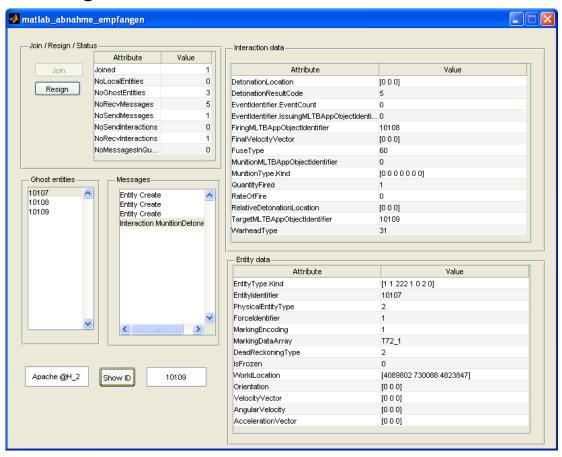

- Anschauliche grafische Implementierung mit Zustandsdiagrammen
- einfache Funktionstests
- automatische Code-Generierung
- kurze Entwicklungszeit

Interoperabilität von Simulatoren

- Training komplexer Szenarien im Verbund
- Austausch von
 - Bewegungsdaten (Fahrzeugdynamik)
 - Audiodaten (Cockpit, Pilot)
 - Audio-/Videodaten (Instructor, Operator)
- Vernetzungsstandards:
 - DIS (udp-Broadcast)
 - HLA (Middleware, RTI, OOP)



- Vernetzung erfordert detaillierte IT-Kenntnisse
- Applikationsingenieur
 - verfügt über ausgeprägte Applikationskenntnisse
 - ist routiniert im Umgang mit Modellierungs- und Simulationssoftware
 - ist i.d.R. KEIN Netzwerk-Spezialist
- Entwicklung von wiederverwendbaren Komponenten (S-Functions, MEX-Files)
- → Einfache Instrumentierung eines bestehenden Simulink Simulationsmodells per Drag & Drop für die vernetzte Simulation
- automatische Codegenerierung von Plattform-spezifischem Echtzeitcode

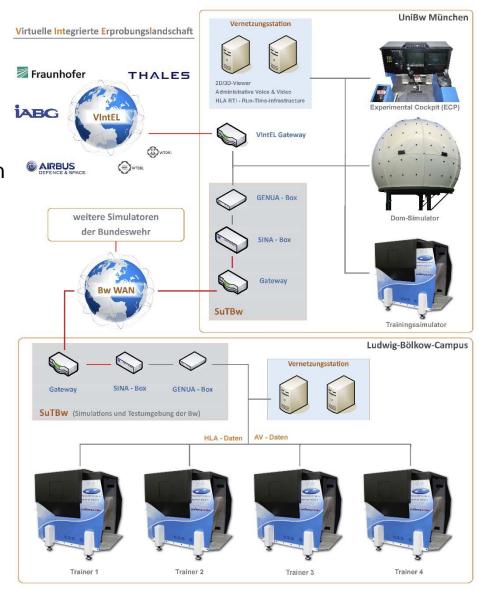


- Einfache Instrumentierung eines bestehenden Simulink
 Simulationsmodells per Drag & Drop für die vernetzte Simulation
- Hier: Publizieren der eigenen Bewegungsdaten

- MATLAB m-File Programmierung für portable grafische Benutzeroberflächen
- Hier: Monitoring einer verteilten Simulation

Unsere Testanlage:

Dislozierung:


- UniBwM / Neubiberg
- Ludwig-Bölkow-Campus / Ottobrunn

Simulations- und Testumgebung der Bundeswehr (SuTBw):

- Kryptographie-Rechner (Sina Box)
- VPN-Router (Genua)

Virtuelle Integrierte Erprobungslandschaft (VIntEL) Kooperation mit

- Forschungsinstituten und
- Industrie

Bewertung aus Software Engineering Sicht

- + Interoperabilität Programmierschnittstellen (MEX, S-Function)
- + Skalierbarkeit einfache Hardware (Arduino) ← → leistungsfähige Hardware (B&R X20 CPU)
- + Portierbarkeit automatische Codegenerierung
- Wiederverwendbarkeit wiederverwendbare Bausteine
- + Erweiterbarkeit High-Level-Ansatz
- + Wartbarkeit Anwendungsspezifische Modellierung

Unsere Erfahrungen mit MATLAB für vernetzte Simulationen:

- Applikation steht im Fokus
- Bereitstellung wiederverwendbarer Komponenten entlastet Applikationsingenieur
- Toolkette MATLAB/Simulink, MATLAB/Stateflow MATLAB/Simulink
 Coder Echtzeitcode funktioniert
- Kurze Zykluszeiten im Entwicklungsprozess
- Hohe Qualität des erzeugten Programmcodes
- Unabhängig von der Hardware
- Modellbasierte Simulation und Entwurf in Verbindung mit automatischer Codegenerierung bieten großes Potential für vernetzte Simulationsanwendungen