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Rückwirkungsfreiheit zwischen Embedded 

SW-Komponenten – Polyspace hilft!

By Christian Guß
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Freedom of Interference

What is that?

Timing and Execution
 Deadlocks
 Race conditions
 Sequence error

Memory
 Corruption of content
 Access out of bounds
 Invalid r/w access

Exchange of Information
 Interface violation
 Non initialized data
 Null-Pointers
 Data size mismatch

When processes and modules working together on shared resources
some interference issues could occur which are very hard to find…
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Typical Automotive Software Architecture
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ISO 26262-6: Freedom from interference (Annex D)

Goal: Prevent or detect faults that can cause interference between 

software elements (e.g. different software partitions)

• Deadlocks

• Race Conditions

D2.2 Timing and execution

• corruption of content

• out-of-bound pointers and arrays, etc.

• read or write access to memory allocated to another software element

• exhaustive identification of unprotected shared variables

• documentation of read-/write access to global variable

D2.3 Memory

• corruption of information

• loss of information

D2.4 Exchange of information



5

What you could do is…

Problem: Testing, Hardware protection, restrictions and functional protection could be:

 very expensive to implement,

 not completely protective,

 reducing performance.
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(see ISO 26262-6 Annex D)
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Task 1

Let‘s make an example…

Write bad_glob

Write bad_glob

Part 1

Part 2

Task 2

Read bad_glob

Read bad_glob

Part 1

Part 2

Fix: Critical Section! Problem: When needed?

Overusing can degrade

system performance!
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Polyspace – Data race checks

Find Timing Issues with Multitasking
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Polyspace - Global Variable Usage Protection

 Shared protected global variable

Global variables shared between multiple tasks and protected 

from concurrent access by the tasks

 Shared unprotected global variable

Global variables shared between multiple tasks but not protected 

from concurrent access by the tasks

 Non-shared used global variable

Global variables used in a single task

 Non-shared unused global variable

Global variables declared but not used
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Let‘s make another example…

 Is it safe to use myarray_init Function?

integration_context impacts myarray_init VeryImportantDataimpacts

hard to find!

calls
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[1] Dijkstra, “Notes On Structured Programming”, 1972

Problem with testing: Tests aren’t exhaustive
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With Polyspace …

you can proof the existence and absence of memory access errors like:

Polyspace – Proving Memory Safety

Memory safety 
 aims to avoid software errors that cause safety and security vulnerabilities 

 dealing with random-access memory (RAM) access, 

 such as corruption of content and read/write access to memory allocated by another software element. 

Computer languages such as C and C++ that support arbitrary pointer arithmetic, 

casting, and deallocation are typically not memory safe. 
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Let’s make one last example…
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Example: Optimize design and architecture
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Example: Optimize design and architecture
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Summary

 Do you have Multicore applications?

 Do you have HW/SW protections?

 Do you like to reduce testing effort?

ask for our static analysis solutions

TODAY


