MATLAB EXPO 2016

Ruckwirkungsfreiheit zwischen Embedded
SW-Komponenten — Polyspace hilft!

By Christian Gul}

4\ MathWorks

Freedom of Interference
What is that?

Timing and Execution Memory Exchange of Information
= Deadlocks = Corruption of content * |nterface violation

= Race conditions = Access out of bounds = Non initialized data

= Sequence error = |nvalid r/w access = Null-Pointers

= Data size mismatch
MATLAB EXPO 2016

4\ MathWorks

Typical Automotive Software Architecture

Failure\

Non Critical

Application Application
1 N

Services Layer External Autosar External Autosar External Autosar
Interface Interface Interface
ECU Abstraction Layer Drivers @ Services Communication OSp;;ta:mng

M'Crocontriller Abstraction Internal Interface Internal Interface Internal Interface
ayer

Basic Software

MATLAB EXPO 2016

1ISO 26262-6: Freedom from interference (Annex D)

Goal: Prevent or detect faults that can cause interference between
software elements (e.g. different software partitions)

4\ MathWorks

D2.2 Timing and execution

 Deadlocks
 Race Conditions

D2.3 Memory

 corruption of content
« out-of-bound pointers and arrays, etc.

» read or write access to memory allocated to another software element
 exhaustive identification of unprotected shared variables
« documentation of read-/write access to global variable

D2.4 Exchange of information

« corruption of information
* loss of information

MATLAB EXPO 2016

What you could do is...

fault
injection

boundary
tests

Problem:

Memory
— Protection
Unit

Error
— Correcting
Code

Cyclic
— redundancy
check

|| redundant

storage

| defensive

code

only static
memory
allocation

restricted
access to
memory

&\ MathWorks:

Data flow
analysis

| Control flow

analysis

Formal
analysis

(see ISO 26262-6 Annex D)

Testing, Hardware protection, restrictions and functional protection could be:
very expensive to implement,

not completely protective,

reducing performance.
MATLAB EXPO 2016

4\ MathWorks

Let's make an example...

llfk

1
2 = DATA ERACE
------------------ 1 5 # #
| .
TaSk 1 1 4 int bad globl: /* Defect Data race =f
1 5
: & wold bug datarace taskl (void)
. 1 T |
W”te bad—g|0b : 8 bad globl = 1; /* Hon-atomic write access L
| 9 3}
! 10
F)Eirt 1. 1 11 wold bug datarace taskZ (void)
! 12
1 13 int local wvar;
14 local war = bad globl:; /* Non-atomic read access =
15 printf ("%d4", local wvar):
}

Read bad_glob

1

1

1

1

1

1

1

|

! Part 1
i Part 2

i Read bad_glob
1

1

Data Race

BEGIN_CRITICAL SECTICHN():
good_globl = 1;
END CRITICRL SECTION():

Overusing can degrade
system performance!

MATLAB EXPO 2016

How to reduce efforts with
» 11MINg anad Execution®
Safety?

- i-

With static analysis!

MATLAB EXPO 2016

4\ MathWorks

Polyspace — Data race checks

Find Timing Issues with Multitasking messss) | o =

4\ MathWorks

Multitasking

Configure multitasking manually

bug_datarace_task1
bug_datarace_task2

Vi Ched

& [Variable trace

ID 2: ¥ Data race
Certain operations on variablg 'bad qubZ cannterfere with each other and cause unpredictable value.

To avoid interference, operatioms-er—ked=glob2' must be in the same critical section.

Critical section details Starting procedure

Access Race Conditions
erte #1 (nnn atumu:)

BEGIMN_CRITICAL_SECTION

Ending procedure

EMD_CRITICAL_SECTION

ACCESS Fro... 2Cope

S his write in 'bug_task3()' conflicts with Read #1 in 'bug_task4{)' |No protection |bug_task3()

Read #1 (nnn atnmu:)

atign with 64-bit variable DHiW

'bug_task4()' conflicts with Write #1 in 'bug_task3()' [No protection |bug_task4()

¥ 1g long bad globZ;

woid Lug_task4{ id)
{
long long local vwvar;
101 local war = bad globZ;

MATLAB EXPO 2016

long long bad globkZ;

L
void bug task3 (void)
{

L4
volid bug task4 (void)
{
long long local_ var;

local wvar = bad glob2;

4\ MathWorks

Polyspace - Global Variable Usage Protection

[El-Global Variable 2 2 17
-5 2 v Shared protected global variable
B Global variables shared between multiple tasks and protected
i e Y w Warigble: Powerlevel tasksl.c _init_globals{) from concurrent access by the tasks
:arfaE:E: 2:2: t::i'c -f”f:j:nza:sg v' Shared unprotected global variable
: o ariame: 5 WC ni ooals . .
& Protecied variabic . - Global variables shared between multiple tasks but not protected
o[Wariable: SHRS tasks1.c _init_globals() v from concurrent access by th? tasks
-« (x| Wariable: SHR tasks1l.c _init_globals() Non-share;d used qu_baI Vfa”able
E3.Not shared 5 17 Global variables used in a single task
E1.Unused variable 2 v Non-shared unused global variable
Lo ¥ % Variable: second_pai. .. initialisations.c _init_globals{) Global variables declared but not used
i M x Variable: __huge_val huge_valh _init_globals()
[#-Used non-shared variable 17
tasksic tasksic tasksic
tregulate initregulate SHR READ v [x Protected variable "3"
Variable 'tasks 1,5HR."is shared among several tasks. All operations on 'tasks1.5HR." are protected by critical section,
Read by task: trequlate
Written by task: serverl server?
tasksl.c
O Event File Scope Line
server2 4 Written value: 0 tasks1.c _init_globals() 30
tasksi.c tasksi.c
O O 4 Written value: 22 tasks1.c Taerver() 81
b Readwvalue: 0 or 22 tasks1.c initregulate] 53
Tserver SHR WRITE
tasksic
serverl

MATLAB EXPO 2016

4\ MathWorks

Let‘'s make another example...

1 char myarravy[10]:

2 int VeryImportantData;

: void myarray init (char array[], int array size)

s . .. ;
6 { for (int i = 0; i < array size; i++){ U Is it safe to use myarray _Init Function?
T array[i] = 0; B

8 }

g ¥

10

11 void integration context () Ca”S No '

12 { O

13 ff ... before ...

14 myarray init (&array[0], 13):

15 ff ... behind ...

16 lets use my important data(VeryImportantData):

17 }

Integration_context myarray_init VerylmportantData

hard to find!
MATLAB EXPO 2016

10

Problem with testing: Tests aren’t exhaustive

“Program testing can be used to
show the presence of bugs,
but never to show their absence” (Dijkstra [1])

4\ MathWorks

[1] Dijkstra, “Notes On Structured Programming”, 1972

MATLAB EXPO 2016

11

How to reduce efforts with
szvemory* Safrety?

Em——

With static analysis!

MATLAB EXPO 2016

4\ MathWorks

Polyspace — Proving Memory Safety

With Polyspace ...
you can proof the existence and absence of memory access errors like:

Out of bounds array index \2/ ! Tllegally dereferenced pointer |2/ ! Non-initialized local variable (2/
Warning: array index may be outside bounds : [0..9] Error: pointer is outside its bounds Error: local variable is not initialized (type: int 32)
array size: 10 This check may be an issue related to unbounded input values This check may be a path-related issue, which is not dependent on input values
array index value: [1.. 10] Dereference of parameter 'p' (pointer to int 32, size: 32 bits): S ,
Painter is null. vold foo(int *p)
int buffer[10],i = [0};: void foo(int *p) {
o I int wva;
while (i++ < 10){ if (p = 0] if (p '= 0)]
buffer|(i] = 0: o= 42; *p = va;
- } }

Memory safety

= aims to avoid software errors that cause safety and security vulnerabilities

= dealing with random-access memory (RAM) access,
= such as corruption of content and read/write access to memory allocated by another software element.

Computer languages such as C and C++ that support arbitrary pointer arithmetic,
casting, and deallocation are typically not memory safe.

MATLAB EXPO 2016 12

Let’s make one last example...

int16 (5)

uint16

‘\ MathWorks'

1) > | |
i : . int16 uint16
input S int16 y1 = Add1(int16 u1[], uint16 u2) > |l
—P
/ legacy code ,/ Abs
/ Vs
/ /
uint16 / // ——P X
(2) ° I,' . .
. , _
Size intlé Addl({intlé ul[], uintlé size) Divide
{

intlé ret = 0;

uintlé 1 = 0;

Ior (1 =20 -: :R'E 31Z& i:l

|

74 W
ret +=ulffi] <1
1
return ret
} External
code

MATLAB EXPO 2016

>(1)

dverage

14

4\ MathWorks

How to reduce efforts with
sexchange of Information®

With static analyis!

MATLAB EXPO 2016

Example: Optimize design and architecture

4\ MathWorks

int16 (5) |
(1) b int16 int16
input Non Robust Module ——» |yl
o
/ legacy code ,’ Abs
/ /
/ / .
uint16 / // ——Pp X uint16 @
(2) . >
: / ’ > average
size intlé Addl(intlé ul[], uintlé size) Divide g
{ .
. A Illegally dereferenced pointer 2
intlé et = 0; Warning: pointer may be outside its bounds
uintle i = {;: Dereference of expression (pointer to int 16, size: 16 bits):
= . I Pointer is not null.
for (1 =107 1 £ 3ize; itt) Points to 2 bytes at offset 0 or 2 or 4or 6 or 8 or 10 in buffer of 10 bytes, so may be outside bounds,
[Pointer may point to variable or field of variable:
T it .
ret += ulfi] =< 17 Potential
' Runtime Error
EERIER ZEU inside!!!
} External

code
MATLAB EXPO 2016

16

4\ MathWorks

Example: Optimize design and architecture

int16 (5) int16 (5)
D "5 _/ 5' 116 uint16
input Non Robust Module —» ul
Saturation1 —P
Range [0..100] leqacy code Abs
uint16 uint16 > |uint1® &
oO—> /| >
. _ Divide daverage
Size Saturation /
Range [1..9] intlé Addl{intlé ul[], uintlé size)
{ —_— . . ""'flllegallv dereferenced pointer M?.e-'
i in ret = 0; Pointer is within its bound
Add |t|0nal uintlé i = 0: DzlpeﬁarrSnz:a -::?nlaxprzs;cui (pointer to int 16, size: 16 bits):
it = Pointer is not null.
Range- LI m Itl ng for (1 =07 1 < size; it++t) PE:Etsrhlzus EEYE;JS at offset 0 or 2 or 4 or 6 or 8 in buffer of 10 bytes, so is within bounds (if memory is allocated).
COde I Pointer may paint to variable or field of variable:
o 'rtb_Saturation1, local to function 'PolySpace_demo_iecs 1508 _step',
ret += ulfi] << i; |
1
return ret; [Free from
} L Runtime Errors

MATLAB EXPO 2016

17

| 4\ MathWorks

Summary

» Do you have Multicore applications?
» Do you have HW/SW protections?
» Do you like to reduce testing effort?

ask for our static analysis solutions
TODAY

MATLAB EXPO 2016

