
1© 2015 The MathWorks, Inc.

Rückwirkungsfreiheit zwischen Embedded 

SW-Komponenten – Polyspace hilft!

By Christian Guß



2

Freedom of Interference

What is that?

Timing and Execution
 Deadlocks
 Race conditions
 Sequence error

Memory
 Corruption of content
 Access out of bounds
 Invalid r/w access

Exchange of Information
 Interface violation
 Non initialized data
 Null-Pointers
 Data size mismatch

When processes and modules working together on shared resources
some interference issues could occur which are very hard to find…



3

Typical Automotive Software Architecture

Hardware

Microcontroller Abstraction 

Layer

Drivers

Services Layer

ECU Abstraction Layer

Runtime Environment

Application

1

Application

N
…

Internal Interface

Services

External Autosar

Interface

Internal Interface

Communication

External Autosar

Interface

Internal Interface

Operating

System

External Autosar

Interface

Basic Software

Non Critical Critical

Failure ?Affects ?

…



4

ISO 26262-6: Freedom from interference (Annex D)

Goal: Prevent or detect faults that can cause interference between 

software elements (e.g. different software partitions)

• Deadlocks

• Race Conditions

D2.2 Timing and execution

• corruption of content

• out-of-bound pointers and arrays, etc.

• read or write access to memory allocated to another software element

• exhaustive identification of unprotected shared variables

• documentation of read-/write access to global variable

D2.3 Memory

• corruption of information

• loss of information

D2.4 Exchange of information



5

What you could do is…

Problem: Testing, Hardware protection, restrictions and functional protection could be:

 very expensive to implement,

 not completely protective,

 reducing performance.

Robustness-
Testing

fault 
injection

boundary 
tests

Hardware 
protection

Memory 
Protection 

Unit

Error 
Correcting 

Code

Functional 
protection

Cyclic 
redundancy 

check

redundant 
storage

defensive 
code

Restrictions

only static 
memory 

allocation

restricted 
access to 
memory

Static 
analysis 

Data flow 
analysis

Control flow 
analysis

Formal

analysis

(see ISO 26262-6 Annex D)



6

Task 1

Let‘s make an example…

Write bad_glob

Write bad_glob

Part 1

Part 2

Task 2

Read bad_glob

Read bad_glob

Part 1

Part 2

Fix: Critical Section! Problem: When needed?

Overusing can degrade

system performance!



7



8

Polyspace – Data race checks

Find Timing Issues with Multitasking



9

Polyspace - Global Variable Usage Protection

 Shared protected global variable

Global variables shared between multiple tasks and protected 

from concurrent access by the tasks

 Shared unprotected global variable

Global variables shared between multiple tasks but not protected 

from concurrent access by the tasks

 Non-shared used global variable

Global variables used in a single task

 Non-shared unused global variable

Global variables declared but not used



10

Let‘s make another example…

 Is it safe to use myarray_init Function?

integration_context impacts myarray_init VeryImportantDataimpacts

hard to find!

calls



11

[1] Dijkstra, “Notes On Structured Programming”, 1972

Problem with testing: Tests aren’t exhaustive



12



13

With Polyspace …

you can proof the existence and absence of memory access errors like:

Polyspace – Proving Memory Safety

Memory safety 
 aims to avoid software errors that cause safety and security vulnerabilities 

 dealing with random-access memory (RAM) access, 

 such as corruption of content and read/write access to memory allocated by another software element. 

Computer languages such as C and C++ that support arbitrary pointer arithmetic, 

casting, and deallocation are typically not memory safe. 



14

Let’s make one last example…

External

code



15



16

Example: Optimize design and architecture

Non Robust Module

External

code

Potential 

Runtime Error

inside!!!



17

Example: Optimize design and architecture

Non Robust Module

Additional

Range-Limiting

Code

Free from

Runtime Errors



18

Summary

 Do you have Multicore applications?

 Do you have HW/SW protections?

 Do you like to reduce testing effort?

ask for our static analysis solutions

TODAY


