

探索"智能+"发动机数字化研发之路

许智勇, 泛亚驱动系统部

MATLAB **EXPO**

泛亚汽车技术中心的发动机数字化研发探索之路

挑战

汽车市场竞争激烈,车型更新迭代快,车辆驱动系统的新产品、新技术层出不穷,因此提高研发效率、缩短设计周期对提高发动机产品的竞争力尤为重要。


解决方案

- 通过实践,从研发方法、知识、工具等几个方面入手,将开发的公式、流程、知识、经验等内容模型化和代码化;
- 利用MATLAB系列组件,定义了发动机架构和技术策略开发框架, 搭建了发动机技术策略库智能决策和优化模型;
- 利用**智能算法**解决了发动机开发中的多目标决策问题,并开发了实用的发动机研发APP,集成了各领域的算法和模型。

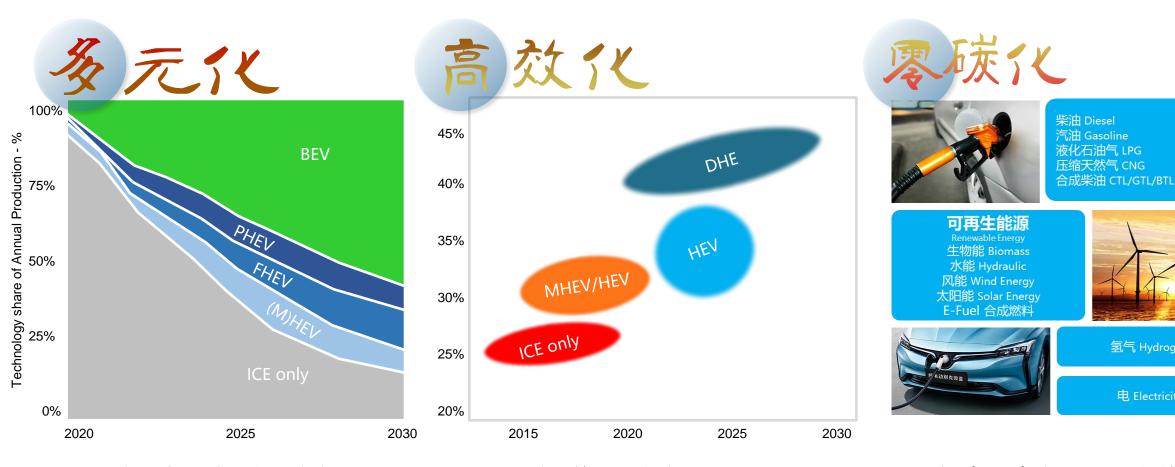
结果

- 为发动机的数字化研发制定了完整的框架和实施方法
- 智能算法的应用提高了决策过程的科学性
- 研发APP成为模型和代码的管理及应用平台,便于日常使用及维护更新,提高了研发工作的效率。

背景

当前市场汽车产品的特点

竞争焦灼风起云涌


面向未来以"智"赋能

剑指高端 以"质"为本

背景

车辆驱动系统技术一日千里

内燃机/电机/电池技术各领风骚

内燃机效率最高达45%~46%

低碳/零碳燃料的开发与使用

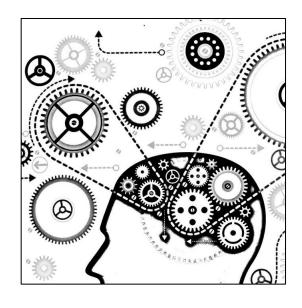
氢气 Hydrogen

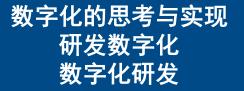
电 Electricity

背景

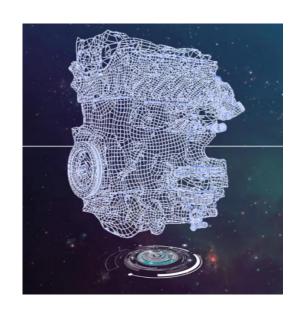
研发数字化是缩短开发周期,降低研发成本,提高研发效率,提升交付质量的有效路径. 泛亚发动机研发数字化,涵盖知识动态化、决策智能化、设计自动化、流程可视化等内容

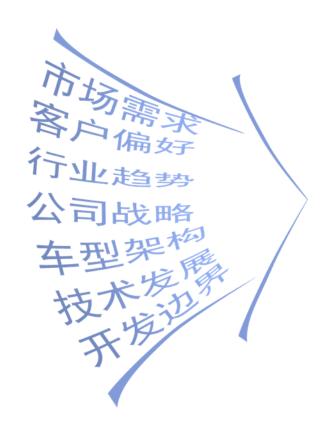
机遇


- 数字化转型是各行各业大势所趋
- 人工智能技术的发展奠定了良好的技术基础


挑战

- 不同组织的数字化转型工作不能生搬硬套理论,结合具体业务才能实现最终落地
- 初始阶段的投入回报比较低,忌浅尝辄止,需要统一思想,坚持不懈。


内容概要


"智能+"决策 知识工程 智能决策/自动运行

模型与平台 模型的集成及使用

数字化研发愿景

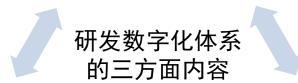
发动机性能及架构

•排量 功率 扭矩 热效率 压缩比 缸径冲程比 ...

发动机技术方案

• 燃烧方案 热管理方案 进气方案 增压方案

零部件设计及技术要求


- 缸体设计 缸体技术要求
- 缸盖设计 缸盖技术要求
- 曲轴设计 曲轴技术要求
- 连杆设计 连杆技术要求

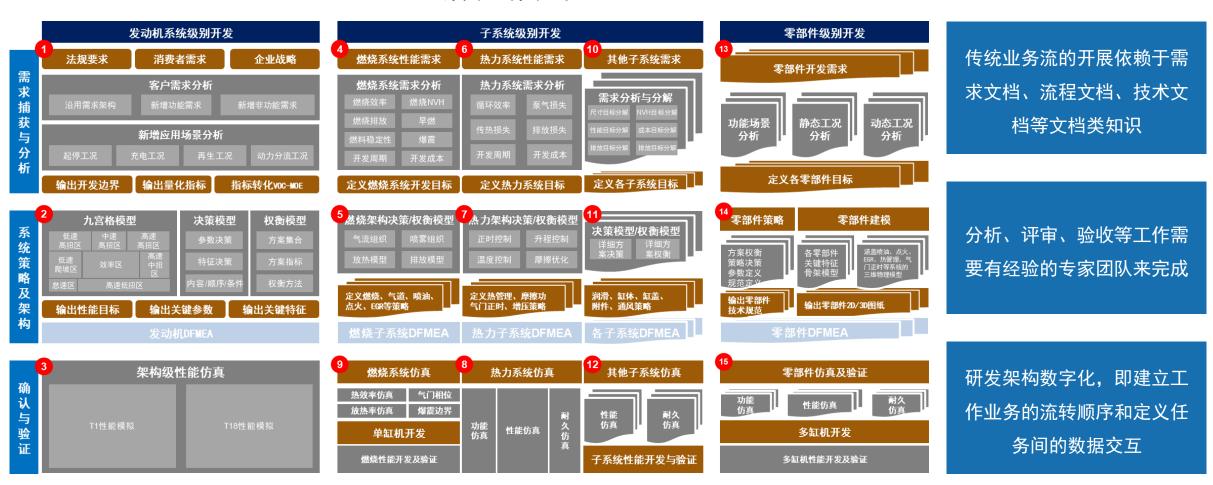
•

研发数字化的愿景及过程解耦

- 研发数字化是知识沉淀的创新路径
- 将研发经验、研发文档、研发活动、研发策略等内容,根据一定的方法论,借助软件开发平台,形成有层次、相关联、可运行的函数、模型或者代码,以实现在虚拟空间完成研发任务的目标。
- 研发数字化价值
 - ——实现知识继承
 - ——解决人才断层
 - ——提升研发效率

数字化设计 (研发载体)

数字化开发架构 (表达清晰/理解一致)



数字化工具 (易上手/使用方便)

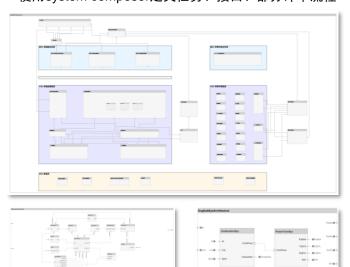
数字化研发架构及技术探索

研发工作流架构

数字化研发架构及技术探索

研发工作流架构

传统工作流大量依赖 "文档"及"人"

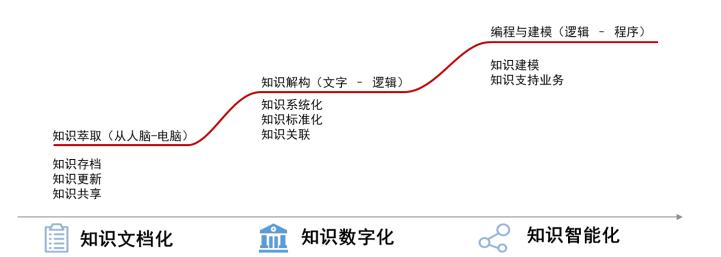


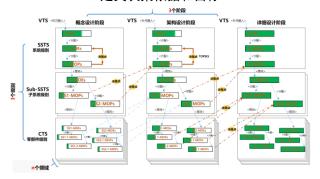
使用MATLAB Requirement定义需求

使用system composer定义任务、接口、部分评审流程

研发架构数字化,利于整理思路、任务分配、明确模块目标、 易于检查完整性

使用Requirement Manager和 MATLAB System Composer 搭建数字化的研发架构模型,表达清晰、接口明确,易于信息准确传递、避免误解,迭代更新方便快捷


研发架构的数字化

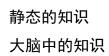

使用数字化工具解决决策问题

- 自动化运行的关键步骤——决策,即:把静态的知识库变为动态知识工具
- 决策基础:知识工程
- · 决策三要素:决策指标、决策流程、决策算法和工具

知识工程的实施步骤

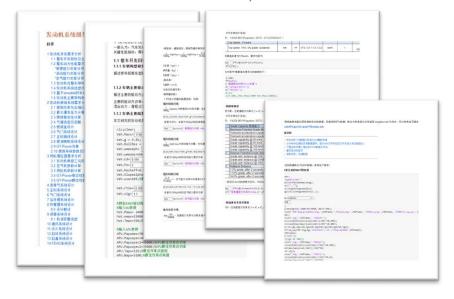
决策指标 定义决策依据和目标

决策流程


决策算法

使用数字化工具解决决策问题

- 自动化运行的关键步骤——决策,即:把静态的知识库变为动态知识工具
- 决策基础:知识工程
- 决策三要素:决策指标、决策流程、决策算法和工具

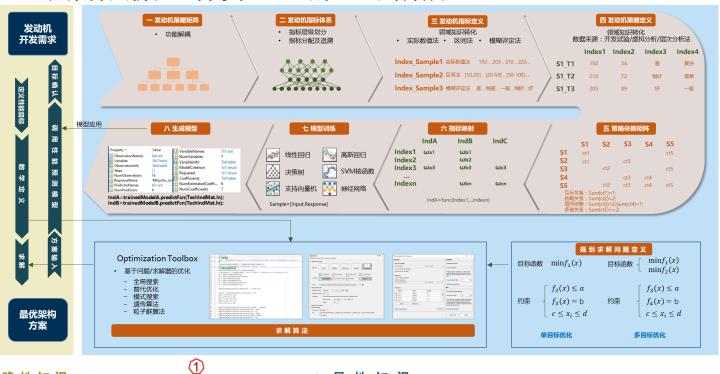




使用MATLAB Live Script沉淀领域知识

使用MathCAD沉淀领域知识

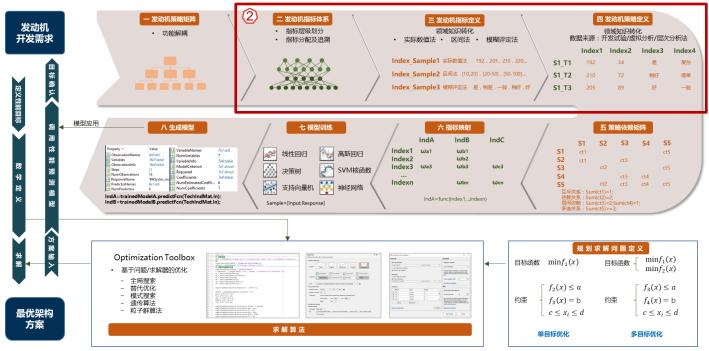
利用Live Script和
MathCAD转化为动态知识


知识动态化、可运行

人与计算机均可识别 利于知识迭代更新

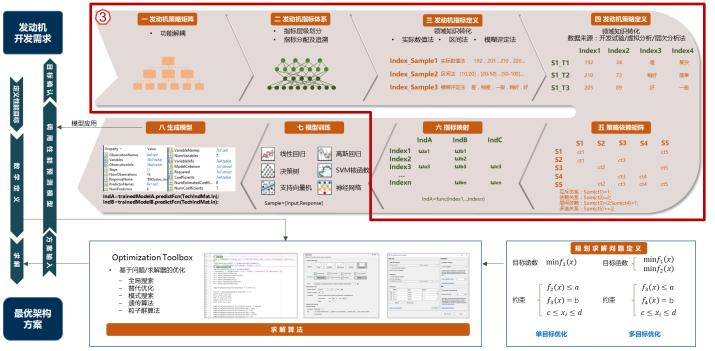
不同领域的动态文档 可联合进行参数优化

- 决策算法——决策自动化的核心步骤,以数学方式解耦决策过程
- 决策三要素:决策指标、决策流程、决策算法和工具
- 数字化工具的应用:问题建模——单目标/多目标优化工具箱Optimization Toolbox,拟合和优化——线性规划函数 拟合工具箱
- 决策算法价值:科学性、一致性、升级潜力

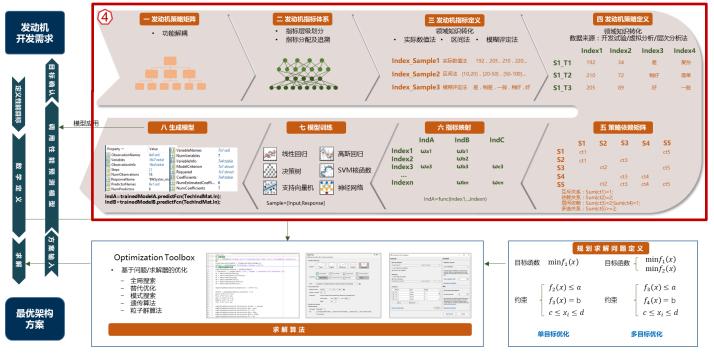


1 隐性知识向显性知识转化, 让知识看得见

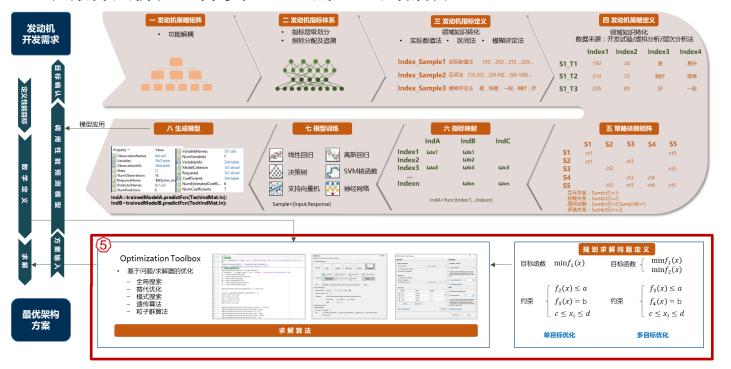
- 2 运用系统性、全面性的指标体系,利于知识表达 标准化、规范化
- 3 应用基于模型的技术 (Model Base Technology) 表达清晰无异议,确保变更的正确转递
- 4 决策模型依赖于指标体系、依赖矩阵、映射矩阵、训练模型等环节,既包含领域知识、又运用了数据科学,随着数据的丰富,模型质量也可以获得提升


- 决策算法——决策自动化的核心步骤,以数学方式解耦决策过程
- **▪** 决策三要素:决策指标、决策流程、决策算法和工具
- 数字化工具的应用:问题建模——单目标/多目标优化工具箱Optimization Toolbox,拟合和优化——线性规划函数 拟合工具箱
- 决策算法价值:科学性、一致性、升级潜力

- 1 隐性知识向显性知识转化, 让知识看得见
- 2 运用系统性、全面性的指标体系,利于知识表达标准化、规范化
- 3 应用基于模型的技术 (Model Base Technology) 表达清晰无异议,确保变更的正确转递
- 4 决策模型依赖于指标体系、依赖矩阵、映射矩阵、 训练模型等环节,既包含领域知识、又运用了数据 科学,随着数据的丰富,模型质量也可以获得提升


- 决策算法——决策自动化的核心步骤,以数学方式解耦决策过程
- 决策三要素:决策指标、决策流程、决策算法和工具
- 数字化工具的应用:问题建模——单目标/多目标优化工具箱Optimization Toolbox,拟合和优化——线性规划函数 拟合工具箱
- 决策算法价值:科学性、一致性、升级潜力

- 1 隐性知识向显性知识转化, 让知识看得见
- 2 运用系统性、全面性的指标体系,利于知识表达标准化、规范化
- 3 应用基于模型的技术(Model Base Technology) 表达清晰无异议,确保变更的正确转递
- 4 决策模型依赖于指标体系、依赖矩阵、映射矩阵、 训练模型等环节,既包含领域知识、又运用了数据 科学,随着数据的丰富,模型质量也可以获得提升

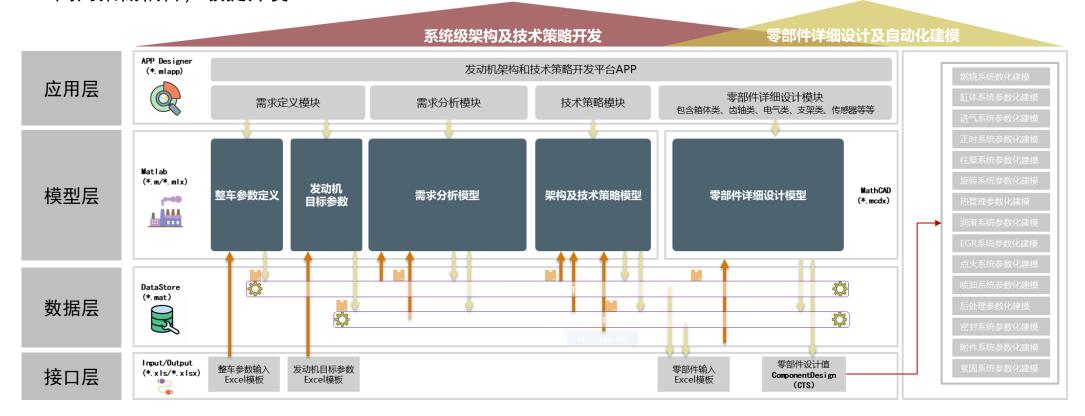

- 决策算法——决策自动化的核心步骤,以数学方式解耦决策过程
- **▪** 决策三要素:决策指标、决策流程、决策算法和工具
- 数字化工具的应用:问题建模——单目标/多目标优化工具箱Optimization Toolbox,拟合和优化——线性规划函数 拟合工具箱
- 决策算法价值:科学性、一致性、升级潜力

- 1 隐性知识向显性知识转化, 让知识看得见
- 2 运用系统性、全面性的指标体系,利于知识表达标准化、规范化
- 3 应用基于模型的技术 (Model Base Technology) 表达清晰无异议,确保变更的正确转递
- 4 决策模型依赖于指标体系、依赖矩阵、映射矩阵、 训练模型等环节,既包含领域知识、又运用了数据 科学,随着数据的丰富,模型质量也可以获得提升

- 决策算法——决策自动化的核心步骤,以数学方式解耦决策过程
- **▪** 决策三要素:决策指标、决策流程、决策算法和工具
- 数字化工具的应用:问题建模——单目标/多目标优化工具箱Optimization Toolbox,拟合和优化——线性规划函数 拟合工具箱
- 决策算法价值:科学性、一致性、升级潜力

5 求解问题

- 最优发动机架构方案生成,本质是个组合优化问题
- 方案空间的数量为~ 273 个, 穷举优化不可行
- 智能算法如遗传算法、粒子群算法的应用,极大的提高优化效率,单次优化时间<5min
- 应用MATLAB Optimization Toolbox工具箱进行算法开发,降低了智能算法的开发使用门槛


- 决策算法——决策自动化的核心步骤,以数学方式解耦决策过程
- 决策三要素:决策指标、决策流程、决策算法和工具
- 数字化工具的应用:问题建模——单目标/多目标优化工具箱Optimization Toolbox,拟合和优化——线性规划函数 拟合工具箱
- 决策算法价值:科学性、一致性、升级潜力

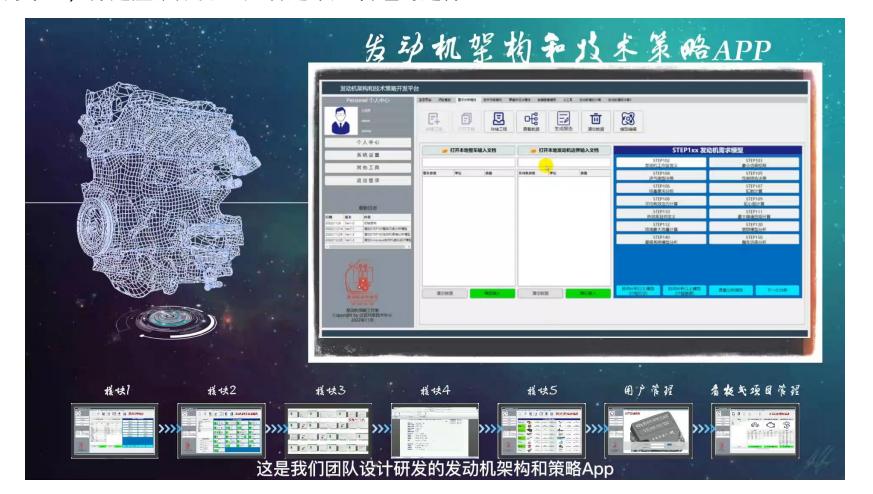
任务	专家能力类型	任务目标	使用的工具		
定义策略矩阵	架构专家/领域专家	定义系统的物理架构/虚拟架构	System Composer		
定义指标体系	架构专家/领域专家	定义领域的指标体系	System Composer/Profile		
定义指标类型	领域专家	确保指标数值标准化	System Composer/Profile		
定义策略指标数值	领域专家	确保正确表达策略	System Composer/Profile		
定义依赖矩阵 指标映射	领域专家/数据专家	知识/经验的转化	Function Define		
模型训练	数据专家	建模求解	Regression Learner		
规划求解	数据专家	决策模型的管理和运用	Global Optimization Toolbox		

模型与平台——集成界面、平台管理

- 领域知识、决策点的分散且庞杂,为了管理和使用更加方便,需要在统一平台上进行管理
- 整合开发流程、开发参数的输入输出、各领域计算和决策模型等。
- 高内聚低耦合,敏捷开发

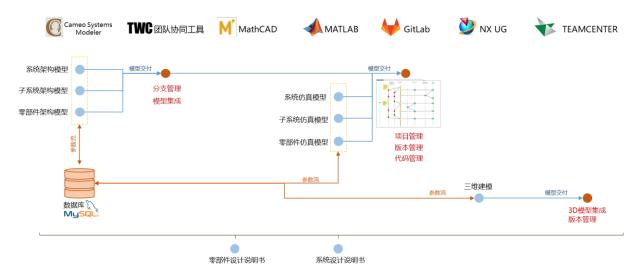
模型与平台——集成界面、平台管理

- 领域知识、决策点的分散且庞杂,为 了管理和使用更加方便,需要在统一 平台上进行管理
- 整合开发流程、参数接口、计算和决策模型、项目管理、报告生成、用户管理等功能
- 高内聚低耦合,敏捷开发



模型与平台——模型耦合, 迭代更新

- 加速发动机技术策略研发速度
- 以设计为中心,打通虚拟分析/生产制造/质量管理的边界


"智能+"推进团队开发能力转型

- 从领域专家到模型专家、数据专家、代码专家,领域知识模型化、代码化
- 规划数据资产的产生管理(计划中)

数字化业务下的专家角色定义

		数字化工作角色													
		管理				集成			开发						
领域专家		统一建模 工具和软 件版本	统一开发 环境	持续更新 和集成工 具链	建立基本 算法库	定义分工 和工作流	把控模型 质量	制定本级 別模型架 构	制定次级 别交付物 规范	制定次級 別建模、 命名规范	定义次级 別模型颗 粒度	完成本领 域建模	完成本领 域建模文 档	持续更新 和细化模 型	响应其他 领域的需 求
	TFO	√	√	√	√	√	√	√	√	√	√	√	√	√	√
	SFO							√	√	√	√	√	√	√	√
	BFO											√	√	√	√

数据资产的生产链和存储链

总结

数字化设计

数字化需求、数字指标体系、数字定义 产品、智能算法,达成隐形知识显性化, 实现知识沉淀与继承

发动机数字化开发架构

利用System Composer,构筑出联结知识、模型、代码的立体网络

数字化开发工具

App Designer、Live Script、规划工具箱、优化求解工具箱等灵活运用,降低了开发门槛,提高开发效率

MATLAB EXPO

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

