

MathWorks助力NVIDIA DRIVE Sim加速自动 驾驶开发

陈晔,NVIDIA中国汽车行业业务拓展总监 王鸿钧,MathWorks中国高级应用工程师

MATLAB EXPO 2021

开发自动驾驶系统——MATLAB, Simulink和相关工具箱

建立用于自动驾驶仿真的虚拟世界

使用RoadRunner,为自动驾驶仿真创建3D场景

使用RoadRunner,为自动驾驶仿真创建3D场景

NVIDIA END-TO-END DRIVE PLATFORM

Autonomous Driving & Al Cockpit of the Future

DRIVE AGX Orin

Hyperion 8 Vehicle Platform

DGX A100

NVIDIA DRIVE

E2E AV Solution to Enable Rapid, Large Scale AI Development & Testing

1,000's Engineers 20+ DNNs, 50 Parallel Experiments

1,000's Engineers HW & SW 20 million lines of code

300k hours, 300M frames 10 PB/wk data collected

Sensor Data+Logs

> 1,500 labelers 50M+ labeled images

1000+ DGX Saturn V 1M+ virtual miles driven 200+ DRIVE Constellations

CONSTRUCTING SCENARIOS

Covering the Known Risks | Discovering the Unknown Risks

NVIDIA DRIVE SIM 2.0

System Level AV Simulator

Built on Omniverse | Cloud Native

Scenario-based | Repeatable & Reproducible

Scalable | Workstation to Data Center | SIL or HIL

Improved Asset Import | RTX-based Sensors

Open | Modular | Extensible

DRIVE SIM 2.0 - USE CASES

Accelerated AV Development to Large Scale Validation

PERCEPTION

- Generate synthetic dataset from Sim
- Rapidly iterate on DNNs & algorithms

PLANNING & CONTROL

- Bypass perception with GT sensors
- Develop and debug P&C algorithms

FULL AV STACK

- Evaluate AV stack end-to-end
- From sensor input to actuation

VIRTUAL VEHICLE

- Evaluate full driving experience
- UI/UX, cockpit displays, HMI, speech etc.

Common Toolchain | Seamless Transition | SIL or HIL

INCREASING DEVELOPERS EFFICIENCY, SPEED & COVERAGE

Optimizing for Productivity and Cost

GAME ENGINES ARE NOT DESIGNED FOR AV SIMULATION

	AV Simulation Requires:	Game Engine
Scalability	Scalability across multiple GPUs and multiple GPU nodes	Not designed to scale across multiple GPUs or nodes
Sensors	Physically accurate sensors Optimized for accuracy	Viewports Optimized for gamers Beautiful but not accurate
Timing	Timing control Repeatability Single process to schedule all threads	Non-deterministic behavior No timing guarantees
Modularity	Modularity Extensions easy to write, load, distribute	Not modular Content exported into proprietary format
Sim World State	API to access and modify world state Full history Ability to replay Sim	Opaque to other codebase No history
Cloud	Cloud native architecture	Authoring & runtime closed Not cloud native

NVIDIA OMNIVERSE

NVIDIA's Simulation & Collaboration Platform

Architected for large-scale, multi-sensor simulation

Physically accurate, real time rendering with RTX

Built on Pixar's Open Universal Scene Description (USD)

Deployed on any NVIDIA RTX™ GPUs

Open | Modular | Extensible | Cloud native

DRIVE SIM 2.0 ENABLES ELASTIC SIMULATION TIME

Can Run Faster or Slower than Realtime - Use Case Driven

SENSOR MODELS IN DRIVE SIM

Raytracing-Based Sensor Models

Camera Radar
Lidar USS

Preset Models

DRIVE Sim directly support many sensors from well-known manufacturers

Configure Models

Parameters of NVIDIA sensor models can be adjusted to meet specific sensor requirements

Custom Models

Custom models can be created by users for new sensor types

Partner Models

NVIDIA Ecosystem Partners build DRIVE Sim compatible models

DRIVE SIM 2.0 - RTX CAMERA IMAGES

DRIVE SIM 2.0 - RTX CAMERA IMAGES

GENERATING GT DATA FROM SIMULATION

Accelerating Perception Development

Fast | Perception development can start from day one

Accurate | No humans in the loop

Diverse | Corner cases & rare conditions

Low cost | Compared to collecting real data

PERCEPTION DNN DEVELOPMENT - THREE PHASE APPROACH

Simulation First Approach for Fastest Time to Production

- All synthetic data generated from Sim
- · Rapidly iterate on new DNNs

- Scale real data collection and labeling
- Train on hybrid dataset

Find the optimal sim/real dataset mix

DRIVE SIM FOR PERCEPTION DEVELOPMENT

Case Study: Using imitation training to better classify trucks

Perception Failure Event

DRIVE SIM FOR PERCEPTION DEVELOPMENT

Sample of DRIVE Sim generated training data to better detect trucks

RETRAINED RESULT

Failure Event & Re-train

DRIVE SIM CLOUD NATIVE WORKFLOW

"Google Docs" for Simulated Worlds

Content and application are decoupled

- Content pushed to Nucleus, loaded at runtime

USD assets remain editable and 'live' at runtime

- no pre-baking to 'dead' game engine format

Content updates published as diffs

- Lite, fast and efficient

Fast turnaround from content generation to Sim results

CREATING & IMPORTING ROAD NETWORK TO DRIVE SIM

自动驾驶测试场景的两种来源

如何生成自动驾驶的测试场景?

从记录的数据生成场景

Scenario Generation from Recorded

Vehicle Data

Automated Driving Toolbox

自动生成场景的变种

Automatic Scenario Generation
Automated Driving Toolbox

仿真带人工智能的目标车辆

Highway Lane Following with Intelligent Vehicles

Automated Driving Toolbox, Navigation Toolbox, Model Predictive Control Toolbox

MathWorks提供用于分析和重建驾驶场景的数据技术

Ford 从记录的数据中提取事件

Using MATLAB on Apache Spark for ADAS Feature Usage Analysis and Scenario Generation

MathWorks Automotive Engineer Conference 2020

BMW 自动标注记录的图像

Automated Verification of Automotive Infotainment

MathWorks Automotive Conference 2020 – Europe

GM 从记录的数据生成仿真场景

Creating Driving Scenarios from Recorded Vehicle Data for Validating
Lane Centering Systems

MathWorks Automotive Conference 2020 – North America

MathWorks提供用于仿真<u>车辆动力学</u>的Simulink附加库

相关工具箱: Vehicle Dynamics Blockset, Automated Driving Toolbox

开发自动驾驶系统——MATLAB, Simulink, 以及RoadRunner

设计检测与定位算法

相关工具箱: Automated Driving Toolbox, Computer Vision, Lidar Toolbox, Radar Toolbox, Deep Learning Toolbox, Navigation Toolbox

设计<u>跟踪与融合</u>算法

相关工具箱: Automated Driving Toolbox, Tracking and Fusion Toolbox, Radar Toolbox

设计规划与控制算法

相关工具箱: Automated Driving Toolbox, Model Predictive Control Toolbox, Stateflow, Navigation Toolbox, Reinforcement Learning, Robotics System Toolbox

开发自动驾驶应用软件

相关工具箱: MATLAB Coder, Embedded Coder, GPU Coder, HDL Coder, ROS Toolbox, AUTOSAR Blockset, DDS Blockset, Simulink Test, Simulink Coverage, Polyspace, IEC Certification Kit