MATLAB EXPO 2021

MathWorks助力轨道交通企业的数字化转型 Accelerate the pace of digital transformation in Rail

宋胜凯 / Shengkai Song

轨道交通行业动态及挑战

Trends and key business challenges

中共中央关于制定国民经济和社会发展第十四个五年 规划和二〇三五年远景目标的建议

提升产业链供应链现代化水平:实施产业基础再造工程

发展战略性新兴产业:推动互联网、大数据、人工智能等同各产业深度融合

统筹推进基础设施建设:加快建设交通强国

加快数字化发展:推进数字产业化和产业数字化

http://www.china-railway.com.cn/xwzx/ywsl/202011/t20201104 110189.html

专栏6 中国的高速铁路

中国构建了完备的高速铁路技术体系,总体技术水平迈入世界先进行列,部分领域达到世界领先水平。截至2019年底,全国高铁运营里程超过3.5万公里,占全球高铁运营里程的三分之二以上,初步实现了相邻大中城市间1小时至4小时交通圈、城市群内半小时至2小时工作生活圈。以"八纵八横"高速铁路为主通道,建成了北京到天津、上海到南京、北京到上海、北京到广州、哈尔滨到大连等一批设计时速350公里、具有世界先进水平的高速铁路,累计安全运行里程超过75亿公里。2019年动车组发送旅客23.6亿人次,中国高铁不仅代表了"中国速度",更续写了经济高质量发展的新篇章,为经济社会发展注入了磅礴活力,铺平了人民的幸福路。

《中国交通的可持续发展》白皮书

中国国家铁路集团:

"紧密对接国家重大战略,<u>持续优化</u>高铁网、普速铁路网、城际铁路网规划布局,切实发挥铁路大动脉作用,助力畅通国内大循环和国内国际双循环。深入推进铁路运输供给侧结构性改革,开发<u>更加符合市场需求</u>的客货运输产品,创新运输组织模式,<u>加快</u>市场化经营和服务提质步伐,积极推动多种交通运输方式融合发展,不断<u>提升</u>铁路运营品质和效率效益。"

持续提升的"复杂性"

Complexity

日益严苛的规范要求 Stricter regulatory requirements

- 安全性 Safety
- 互操作性 Inter-operability

日益增长的业主需求 Increasing customer demands

- 效率 Efficiency
- 维护与可服务时间 Maintenance & uptime

Increasing Complexity
■ 大量增加的电子设备使得嵌入式软件显著增长 Increasing amount of Electronics leads to more Embedded Software

■ 更多的关注 Increasing Concerns with

- 软件质量与认证 Software Quality & Certification
- 上市时间 Time to Market

为什么进行"数字转型"

Why Digital Transformation?

做得"更好" Do things better 优化 Optimization

- 对业务/系统的运行进行优化Optimize design performance in-operation
- 对系统的维护需要进行预测Predict when system needs maintenance
- 对连接在一起的"群"进行管理
 Manage a fleet of connected systems

创造新事物 Do new things 转型

Transformation

- 进入新领域和市场
 Go into new industries and markets
- 将业务扩展到整个平台的服务周期范围
 Expand into an entire platform service
- 为客户提供独特的价值
 Provide unique value to your customer

数字转型的关键 – 之模型

Key Factors - Extending Through the System's Lifecycle

Digital Thread

数字转型的关键 – 之数据

Key Factors - Data centralization

现场数据 Field data

系统数据 System data

用户数据 User data

环境数据 Environment data

大数据 Big Data

云平台 Cloud Platforms

数据种类繁多带来复杂性提升 Data diversity complexity

- 工程数据、科学数据和现场数据 Engineering, Scientific, and Field
- 商业数据 & 交易数据 Business & transactional
- 噪声,异常,数据遗失 Noisy, Outliers, Missing data
- 时间序列数据的同步Time series synchronizing

当前的数据管理加重了这种"复杂性"

Modern data management multiplies complexity

- 种类繁多的数据来源 Proliferation of data systems, more siloes
- 需要权限访问的云端数据、异构数据 Cloud, on-premise, hybrid
- 越来越多的数据——"大"数据Big Data

阿尔斯通在产品开发中使用自动代码生成技术

ALSTOM

Alstom Generates Production Code for Safety-Critical Power Converter Control Systems (2004)

Challenge

Design and implement real-time power conversion and control systems for trams, metros, and railways

Solution

Use MathWorks tools for Model-Based Design to design, simulate, and automatically generate production code for safety-critical transportation systems

Results

- Development time cut by 50%
- · Defect-free, safety-critical code generated and certified
- Common language established

"When Alstom delivered a
Pendolino train to Czech
Railways, the railway applicative
was the first with automatical
generated code to receive T
certification (for EN 50128)

welopment time cut by 50%
flect-free, safety-critical code generated and certified was the first with automatic generated code to receive certification (for EN 50128)

庞巴迪部署MBD降本增效

Bombardier

The First Steps Exploring MBD

2013: 120 hours prestudy as part of a process improvement work package

- We learned that we can detect and correct design errors earlier and more quickly
- We learned that Matlab/Simulink is a strong contender
- A seminar arranged by Mathworks introduced MBD to

2014: 1 MSEK investment

- 60% spent on creating "base" models, 15% on training
- 10% spent on mitigating identified risks in a real custo
- Results
- One electrical design issue was located ahead of first train I
- Iterated a complete system design early, saving lead time for
- Altogether the savings were larger than the investment (RO

First attempt to truly adopt MBD was a Remember to change project planning

2017-2018: We chose a small project, rationale being

- Software is generated from model
- Electrical main circuit is defined by the model

Lessons learned:

- The project must actually plan for early verification (i.e. upd
- Underestimated the work going from a quick & dirty model, to a model fullfilling all formal requirements (configuration management, debug on target, test strategies, functional safety etc.)
- Main Circuit Design: The electrical part of the model has to "look & feel" like a traditional electrical schematics if you want the electrical and system teams to embrace the new method.

An MBD Adoption Story from Bombardier Transportation

Matlab Expo 2018 Erik Simonson Head of Propulsion Control 23rd May 2018 VAGSCNF1F18007 Public

ROMRARDIFR

Status 2018

Work in Progress & Outlook

Update of the software process is in the works

First alpha-baseline of model

- Tested in February in PowerLab
- Launch in real order project planned second half of 2018
- Complient with Safety Integrity Level 2 according to safety norms

System Modelling & Verification

- We expect the largest gains here
- Including all three departments is in a developing phase
- 10 Different teams must coordinate their efforts and define a joint process

Result from 2017

Use Case: New Complex Function

35 % Lead Time Reduction

PROPULSION CONTROL SOFTWARE

Workflow Step	# MBD Iterations (Actual)	# Traditional Iterations (Estimated)
Requirements	4	4
Design	1	3
Implementation	1	3
Test	1	3
Documentation	1	3
Train Test	1	2

原GE轨道交通的基于模型架构设计和系统实现

GETS use model-based engineering workflow

工作流 Workflow

测试框架 Test Framework: 2M-TVF

SNCF开发预测性维护系统

Productionalization of a predictive maintenance system for railways

CBM DATA WORKFLOW

CBM SYSTEM

CBM system is a software tool created to organize predictive maintenance task. It is composed by several function:

- Gather data from on board train systems and sub-systems
- · Order and link data from studied systems
- Analyze data
- Translate data from analyzed data to obtain maintenance orders

ALL OUR USE CASES

围绕模型开展数字化设计

MathWorks Solution

典型的工作流程

What does a typical workflow look like?

基于模型的设计

Model-based Design

开发按规格无误地运行的模型

开发按规格无误地运行的软件

系统建模及仿真

System model and simulation

系统级模型往往涉及多个物理域:机械、电气/电子、软件...

MULTI-DOMAIN

系统仿真往往涉及连续系统,离散系统,状态机, 统,离散系统,状态机, 消息,异步事件... MULTI-SIMULATION MECHANISM

系统建模及仿真

System model and simulation

Shift2Rail 的 OPEUS Energy Simulation

"The MATLAB/Simulink environment is utilized as it provides the user with some good degree of flexibility allowing to simply apply desired changes and to integrate and **simulate** other architectures. "

Components EFFICIENCY	Axle Gear	Induction Motor	Motor Inverter	Auxiliaries	On board batteries	Absorption Circuit	Line Converter	Transforme
				Reg160				
Traction Eff.	97%	81,12%	97,73%	-	-	98%	97,52%	92,19%
Reg. Eff.	97%	86,54%	97,28%	-	-	98%	98,04%	94,10%
Overall Eff.	97%	74,72%	96,85%	93,94%	94,02%	97,63%	97,14%	91,14%
				Reg140				
Traction Eff.	97%	81,81%	97,76%	-	-	98%	97,64%	90,91%
Reg. Eff.	97%	87,24%	97,58%	-	-	98%	98,32%	93,02%
Overall Eff.	97%	64,12%	95,39%	93,93%	94,02%	97,07%	96,75%	87,93%
			Н	igh Speed 30	00			
Traction Eff.	98%	90,24%	98,62%	-	-	98%	98,1%	92,33%
Reg. Eff.	98%	85,81%	97,00%	-	-	98%	98,06%	93,65%
Overall Eff.	98%	89,54%	98,51%	94,12%	94,02%	97,92%	98,03%	92,09%
			Н	igh Speed 2	50			
Traction Eff.	98%	87,07%	98,39%	-	-	98%	98,07%	93,26%
Reg. Eff.	98%	89,24%	97,97%	-	-	98%	98,16%	94,33%
Overall Eff.	98%	84,60%	98,04%	94,07%	94,02%	97,73%	97,82%	92,53%

克诺尔SYDAC基于Simulink平台建立整车系统模型

Graphical modeling environment - modelers do not need to be programmers

Code-Generation - automated model deployment

Rich tool set

Mature user interface

Simulation and debugging environment

Large user base - resource availability

克诺尔SYDAC基于Simulink平台建立整车系统模型

核心能力——自动代码生成

Automatic code generation for choice of languages and targets

ABB在变流器开发中使用代码生成技术

ABB Traction

- 基于Simulink建立了超过50000个模型用于系统级仿真和控制软件设计
 - BMS模型、辅助电源系统控制模型、电机控制模型
 - 电机模型,车辆动力学模型等
- 基于自主开发的模型库,针对数字 控制器的开发环境
 - 支持速率、多任务控制系统开发
 - 支持对系统需求变化的快速响应

Converter controller

A controller is at the heart of the converter system

- Measure signals (speed, current, voltage, ...)
- Calculates new output voltages to reach desired operating point
 - multi-rate, multi-tasking control system

It is a digital controller, which provides

- Repeatable operation
- Performance complex operations
- Adaptable to system changes

Digital control technology is changing rapidly

模型的使用贯穿系统全生命周期

Systematic Use of Models throughout System Lifecycle

- Model DevOps使敏捷开发适用于数据驱动和物理模型驱动的项目实践 Model DevOps brings agile processes to both data-driven and physics-based models
- 基于模型的设计可以很好地映射到Model DevOps工作流 Model Based Design maps nicely onto the Model DevOps workflow
- □ 数据对于开发和运维都很重要
 Data is essential for both development and operations
- □ 企业内各团队需加强协作以实现Model DevOps
 Diverse teams across Engineering, IT, Line of Business, and Operations must collaborate to achieve success in Model DevOps

数字转型的关键 – 之数据

Key Factors - Data centralization

现场数据 Field data

系统数据 System data

用户数据 User data

大数据 Big Data

云平台 Cloud Platforms

数据种类繁多带来复杂性提升 Data diversity complexity

- 工程数据、科学数据和现场数据 Engineering, Scientific, and Field
- 商业数据 & 交易数据 Business & transactional
- 噪声,异常,数据遗失 Noisy, Outliers, Missing data
- 时间序列数据的同步Time series synchronizing

当前的数据管理加重了这种"复杂性"

Modern data management multiplies complexity

- 种类繁多的数据来源
 Proliferation of data systems, more siloes
- 需要权限访问的云端数据、异构数据 Cloud, on-premise, hybrid
- •越来越多的数据── "大"数据 Big Data

MATLAB使数据分析/机器学习工作流程无缝化

MATLAB makes the data analytics/machine learning workflow seamless

Access and explore data

Preprocessing

Feature Engineering

Model Training Model Tuning Integrate Analytics

outliers, time-alignment, etc.

Text files, spreadsheets, databases, binary files, data feeds, web, cloud storage

Domain-specific techniques for Signals, Images, Video, Audio, and Text

Automated Parameter Tuning

MATLAB Apps提高生产力

Apps increase the productivity

通过工具栏APPS访问更多的Apps explore more...

完整的工具链帮助基于数据应用的快速部署

Coder及Compiler工具 支持丰富的部署目标

Deployment on industrial controllers and the cloud

Spark

Server

面向轨道交通行业的课程体系

(1 day)

Railway Curriculum

Prerequisites

For engineers who are new to MathWorks tools.

Technical Computing & Data Analysis

Skills for using the MATLAB platform to perform data analytics and collaborate on ideas across departments. Suitable for Data Analysts.

DSP

Proficiency in modeling and analyzing DSP algorithms. Suitable for DSP Developers and DSP Engineers.

Implementation

Competencies for generating and testing code from design models. The code can be used for rapid prototyping or production code deployment. Suitable for Software Engineers.

Model Management & Testing

Proficiency in working on large-scale Simulink projects and applying Model-Based-Design principles in a common workflow. Suitable for System Engineers and Test Engineers.

Modeling & Simulation

Competencies for using the Simulink platform to develop accurate, optimized, and robust system-level designs. Suitable for Control System Engineers.

Self-paced Online Course

* All online courses can be offered in a classroom

Soft Prerequisite

** Onsite trainings can be customized

MathWorks助力您的数字转型

Accelerate the pace of digital transformation

MathWorks助力您的数字转型

Accelerate the pace of digital transformation

在 MathWorks,我们认为工程师和科学家具有举足轻重的地位。他们拓展了人类的知识,极大地提高了我们的生活水平。我们创造 MATLAB 和 Simulink 的意义便在于帮助他们把工作做到尽善尽美。

Accelerating the pace of engineering and science

更多信息,请访问 www.mathworks.com:

Advisory Railway Systems

System Modeling and Simulation

Model-Based Systems Engineering

"Agile System Developmen

<u>Power Electronics Control Design</u>

MATLAB EXPO 2021

谢谢!

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.