

5G & Future of Connected Vehicles

© 2017 The MathWorks, Inc.

5G Vision and Use Cases

Motivations for V2X

- Safety
 - 33000 death in highway accidents (US DOT, 2012)
 - 5.1 million crashes (US DOT, 2012)
 - Leading cause of death for people of age 11-27
- Mobility & Productivity
 - 5.5 billion hours of traffic delay (per year)
 - 121 billion USD cost of urban congestion (per year)
- Environment
 - 2.9 billion gallons of waste in fossil fuel (per year)
 - 56 billion lbs. of additional emitted CO2

Vehicular Communications

- Vehicle-to-Vehicle (V2V)
- Vehicle-to-Infrastructure (V2I)
- Vehicle-to-Pedestrian (V2P)
- Vehicle-to-Network (V2N)

 Continuous, high-speed, and authenticable safety data exchange among moving vehicles (V2V) and between vehicles and roadway infrastructure (V2I), pedestrians (V2P) and cellular network (V2N)

V2X Standards & MathWorks Solutions

- DSRC IEEE 802.11p
- WLAN Toolbox[™]

- C-V2X Release 14 LTE
- LTE Toolbox[™]

WLAN Toolbox – IEEE 802.11p (DSRC)

802.11p and 802.11a Packet Error Rate Simulations

https://www.mathworks.com/help/wlan/examples/802-11p-and-802-11a-packet-error-rate-simulations.html

LTE Acceleration into V2V/V2X

- In Release 12, 3GPP defined D2D interface known as sidelink within LTE
- In Release 13, study work began on V2V/V2X
- In Release 14, LTE V2X sidelink standard specified

What does LTE Sidelink address?

Ability for UEs to communicate <u>directly</u> with or without network assistance

Main application for Direct Communication mode: public safety (firefighters,...)

Sidelink Direct Communications PHY Procedures

- Uplink transmission resources are used for the sidelink
- The specific sidelink resources in a cell are defined by Tx and Rx pools sent on SIB18 (or pre-configured in the out-of-coverage case)
- The pools occur within recurring time frames known a PSCCH periods
- Transmission resources are selected from a pool using dynamic L1 DCI format 5 signaling in transmission mode 1 (TM1), or at random by the UE in transmission mode 2 (TM2)

TM1: Network directed TM2: Autonomously scheduled

LTE System Toolbox Support for Sidelink & V2X

- LTE System Toolbox supports both:
 - Sidelink Direct Communications
 - V2X (since R2017b)

- PSCCH period modeling and waveform generation (PSCCH and PSSCH resource pools, and scheduling assignment period)
- PSCCH and PSSCH link-level throughput in AWGN
- PSCCH BLER for V2X over fading channel

ProSe Sidelink Direct Communications in LTE System Toolbox

- ProSe sidelink direct communications, transmission modes 1 and 2
- Includes PHY layer transmit/receive functions for FDD/TDD
- Synchronization and broadcast (PSSS/SSSS and MIB-SL, SL-BCH and PSBCH)
- Control (SCI, SCI coding and PSCCH)
- Shared data (SL-SCH and PSSCH)

Release 15: Enhanced safety

- Evolution to 5G
- Better Link budget
- Longer range
- More reliability

Release 16: Advanced safety

- Higher throughput
- Higher reliability
- Wide ranging and positioning
- Low latency

Wireless Communications Development

with MATLAB and Simulink

Model, simulate, design and test 5G systems with MATLAB & 5G Toolbox

We are investing in 5G and LTE

What's LTE System Toolbox?

>200 functions for physical layer (PHY) modeling

- LTE, LTE-Advanced, LTE-Advanced Pro (Rel-8 through Rel-14)
- Scope
 - FDD/TDD
 - Uplink/Downlink/Sidelink
 - Transmitter/Receiver

WLAN Toolbox

- Standard-compliant functions for the design, simulation, and analysis of Wi-Fi systems
- Support engineers working across 802.11 layers ...from baseband IQ at the physical layer, to bits and frames at the MAC layer...

5G Use Cases and Requirements

- eMBB (enhanced Mobile Broadband)
 - High data rates
 - Increased bandwidth efficiency
- mMTC (massive Machine Type Communications)
 - Large number of connections
 - Energy efficiency and low-power operation
- URLLC (Ultra-Reliable and Low Latency Communications)
 - Low latency

5G vs LTE: Main Physical Layer Differences

	LTE	5G
Use cases	Mobile broadband access (MTC later)	More use cases: eMBB, mMTC, URLLC
Latency	~10 ms	<1 ms
Band	Below 6 GHz	Up to 60 GHz
Bandwidth	Up to 20 MHz	Up to 100 MHz below 6 GHz Up to 400 MHz above 6 GHz
Subcarrier spacing	Fixed	Variable
Freq allocation	UEs need to decode the whole BW	Use of bandwidth parts
"Always on" signals	Used: Cell specific RS, PSS,SSS, PBCH	Avoid always on signals, the only one is the SS block

5G Toolbox applications & customer use-cases

Waveform generation and analysis

 New Radio (NR) subcarrier spacings and frame numerologies

End-to-end link-level simulation

- Transmitter, channel model, and receiver
- Analyze bit error rate (BER), and throughput

Golden reference design verification

 Customizable and editable algorithms as golden reference for implementation

5G Toolbox

- NR 5G PHY behavioral models in MATLAB
- Transmit and receive for Downlink & Uplink
- TDL and CDL channel models
- Waveform generation
 - Transport channels, physical channels and signals
 - Synchronization bursts
- Reference designs as detailed examples
 - Link-level simulation & throughput measurements
 - Cell search procedures

5G Toolbox has open customizable algorithms

• All functions are

Open, editable, customizable MATLAB code C/C++ code generation:
Supported with MATLAB Coder

Numerology and Subcarrier Spacing

- Subcarrier spacing can be a power-of-two multiple of 15kHz
- Toolbox supports variable subcarrier spacings
- Waveforms generated by Toolbox can contain a mix of subcarrier spacings

μ	Df = 2 ^µ * 15kHz	Slots / ms
0	15	1
1	30	2
2	60	4
3	120	8
4	240	16

Maximum Supported Bandwidth

μ	$\Delta f = 2^{\mu} *$	Max	nrREs	nrREs * ∆f
	15kHz	NDLRB		(MHz)
0	15	275	3300	49.50
1	30	275	3300	99
2	60	275	3300	198
3	120	275	3300	396
4	240	138	1656	397.44

Physical layer channels and signals

- Shared, control and broadcast channels
 PDSCH, PUSCH, PDCCH, PUCCH, PBCH
- Synchronisation and reference signals

PSS, SSS, DM-RS

BWP 1 in Carrier (SCS=15kHz). PUCCH and PUSCH location

Bandwidth Parts (BWP)

- Carrier bandwidth divided into BWPs
- A BWP is characterised by
 - Subcarrier spacing
 - Cyclic prefix
- Addresses the following issues:
 - Some devices may not be able to receive the full BW
 - Bandwidth adaptation: reduce energy consumption when only narrow bandwidth is required
- 5G Toolbox supports different BWPs

A MathWorks

Downlink Waveform Generation

5G waveform generation

- 5G Toolbox supports downlink & uplink waveform generation
- Generated waveforms feature:
 - mixed numerology
 - multiple bandwidth parts
 - multiple PDSCHs / PUSCHs
 - multiple PDCCHs / PUCCHs
 - fully parameterizable SS bursts
 - multiple CORESETS and search spaces

Power levels have been modified to improve visualization

📣 MathWorks[®]

5G waveform generation in action

5G NR Downlink Carrier Waveform Generation

Create DL waveforms containing SS burst, PDSCH, PDCCH and DM-RS, with mixed SCS and multiple BWPs.

Open Script

MATLAB Example

Transport Channels

- Offer information transport services to MAC layer
- Carry control/signalling and data
- Define the scrambling, channel coding, interleaving and rate matching to apply to the information

DL Transport Channels	UL Transport Channels
DL-SCH	UL-SCH
DL shared channel	UL shared channel
DCI	UCI
Downlink control information	Uplink control information
BCH	RACH
Broadcast channel	Random access channel
PCH Paging channel	

Transport Channel Processing: Encoding & Decoding

BCH

DL-SCH

DCI

5G coding for user channels & control channels

Process 5G NR DL-SCH and UL-SCH transport blocks using LDPC coding.

Open Script

MATLAB Example

Model the new CA-Polar coding technique in 5G NR communications system.

Open Script

MATLAB Example

📣 MathWorks

5G Toolbox – PHY Layer Functions

NR Processing Subsystems

- LPDC & polar coding
- CRC, segmentation, rate matching
- Scrambling, modulation, precoding

NR Downlink and Uplink Channels and Physical Signals

- Synch & broadcast signals
- DL-SCH & PDSCH channels
- DCI & PDCCH channels
- UCI, PUSCH, and PUCCH channels

MIMO Prop channels

TDL & CDL channel models

MathWorks*

Fully Configurable PDSCH

- Allocated symbols in the slot
- Slots used for PDSCH
- Period of the allocation (in slots)
- Allocation (PRBs) in the BWP
- Support for multiple PDSCHs

pdsch = [];		
<pre>pdsch(1).Enable = 1;</pre>		
pdsch(1).BWP = 1;		
pdsch(1).Power = 0;	-PS configuration (TS 38 211 secti	0.0
<pre>pdsch(1).DataSource = 'PN9';</pre>	h(1) PortSet = 0:ndsch(1) NI avers-	1.
pdsch(1).TargetCodeRate = 0.478	<pre>85; h(1).PDSCHMappingType = 'A':</pre>	ر ⊥ و
pdsch(1).Xoh_PDSCH = 0;	h(1), DL DMRS typeA pos = 2;	2
pdsch(1).Modulation = 'QPSK';	h(1).DL DMRS max len = 1;	2
pdsch(1). NLayers = 2; pdsch(1) BVS aguence = [0, 1, 2, 3]	<pre>h(1).DL_DMRS_add_pos = 0;</pre>	2
pusch(1).RvSequence = [0,1,2,5]	h(1).DL_DMRS_config_type = 2;	2
	<pre>pdsch(1).NIDNSCID = 1;</pre>	2
	pdsch(1).NSCID = 0;	2
	pdsch(1).PowerDMRS = 0;	2

<pre>pdsch(1).AllocatedSymbols = [2:10];</pre>	<pre>% Range of symbols in a slot</pre>
pdsch(1).AllocatedSlots = [0:9];	% Allocated slots indices
pdsch(1).AllocatedPeriod = 15;	% Allocation period in slots
pdsch(1).AllocatedPRB = [0:5, 10:20];	% PRB allocation
pdsch(1) RNTI = 0;	% RNTT
pdsch(1).RNTI = 0;	% RNTI
pdsch(1) NID = 1;	% Scrambling for data part
pusch(1).N10 - 1,	% Seramorring for data pare

CORESET(Control Resource Sets) and Search Space Configuration

- 5G Toolbox allows you to specify
 - Possible locations (in time and frequency) of the control channel for a given numerology
 - Allocated OFDM symbols in a slot
 - CORESET duration in symbols, either 1, 2 or 3.
 - The allocated slots
 - Periodicity of the allocation

% CORESET/search configurations coreset = []; coreset(1).AllocatedSymbols = [0,7]; coreset(1).AllocatedSlots = [0,1]; coreset(1).AllocatedPeriod = 5; coreset(1).Duration = 3; coreset(1).AllocatedPRB = 6*[0,1,3];
A MathWorks

PDCCH Mapping to CORESET: CORESET specification

PDCCH Mapping to CORESET: Example

Uplink: Fully Configurable PUSCH

- Allocated symbols in the slot
- Slots used for PUSCH

pusch = [];

- Period of the allocation (in slots)
- Allocation (PRBs) in the BWP

<pre>pusch(1).Enable = 1;</pre>			
pusch(1).BWP = 1;			
<pre>pusch(1).Power = 0; pusch(1).EnableCoding = 1; pusch(1).NID = 1; pusch(1).RNTI = 0; pusch(1).TransformPrecoding = 0; pusch(1).TargetCodeRate = 0.47; pusch(1).Xoh_PUSCH = 0; pusch(1).Xoh_PUSCH = 0;</pre>	<pre>% Transmission settings pusch(1).TxScheme = 'codebook'; pusch(1).Modulation = 'QPSK'; pusch(1).NLayers = 2; pusch(1).NAntennaPorts = 4; pusch(1).TPMT = 0;</pre>	<pre>pusch(1).PUSCHMappingType = 'A'; pusch(1).AllocatedSymbols = 0:13; pusch(1).AllocatedSlots = [0 1]; pusch(1).AllocatedPeriod = 5; pusch(1).AllocatedPRB = 0:10;</pre>	% PUSCH mapping type ('A'(slot-wise),'B'(non slot-wise)) % Range of symbols in a slot % Allocated slots indices % Allocation period in slots (empty implies no repetition) % PRB allocation
	<pre>pusch(1).RVSequence = [0 2 3 1]; pusch(1).IntraSlotFreqHopping = ' pusch(1).RBOffset = 10; % Multi-slot transmission pusch(1).InterSlotFreqHopping = '</pre>	disabled'; enabled';	

Uplink: PUCCH Configuration

- Fully configurable set of parameters
- Support for multiple PUCCH instances

% Format specific parameters pucch(1).PUCCHFormat = 3; pucch(1).StartSymbol = 3; pucch(1).NrOfSymbols = 11; pucch(1).InitialCS = 3; pucch(1).OCCI = 0; pucch(1).Modulation = 'QPSK'; pucch(1).NrOfRB = 9; pucch(1).SpreadingFactor = 4; pucch(1).AdditionalDMRS = 1;	 % PUCCH format 0/1/2/3/4 % Starting symbol index % Number of OFDM symbols allocated for PUCCH % Initial cyclic shift for format 0 and 1 % Orthogonal cover code index for format 1 and 4 % Modulation for format 3/4 ('pi/2-BPSK','QPSK') % Number of resource blocks for format 2/3 % Spreading factor for format 4, value is either 2 or 4 % Additional DM-RS (0/1) for format 3/4
<pre>pucch(1).RNTI = 0;</pre>	% RNTI (065535) for formats 2/3/4
pucch(1).NID = 1;	% PUCCH scrambling identity (01023) for formats 2/3/4
pucch(1).HoppingId = 1;	% PUCCH hopping identity (01023) for formats 0/1/3/4
pucch(1).NIDDMRS = 1;	% DM-RS scrambling identity (065535) for PUCCH format 2

5G Channel Models

- Implementation of 5G channel models TR 38.901
- These include control of:
 - Delay profile: TDL and CDL profiles: A, B, C, D, E or custom
 - Channel delay spread
 - Doppler shift
 - MIMO correlation
 - CDL: spatial channel model, includes also:
 - Antenna array geometry [M, N, P, Mg, Ng]

5G downlink end-to-end link-level throughput measurements

5G uplink end-to-end link-level throughput measurements

PUSCH

nodulation

UL-SCH

Impl.-specific

precoding

CP-OFDM / NRB=52 / SCS=15kHz / QPSK 193/1024 / 1x2

Synchronization

- Construct synchronization signal (SS) bursts
- Pass waveform through fading channel
- Synchronize to receive waveform using
 - Primary synchronization signal (PSS)
 - Secondary synchronization signal (SSS)
 - PBCH demodulation reference signal
 (PBCH DM-RS)
- Perform PBCH decoding and parsing

Demo

MathWorks[®]

Cell search and selection procedures

- Obtain cell ID and initial system information including Master Information Block (MIB)
- Perform the following steps:
 - Burst generation
 - Beam sweep
 - TDL propagation channel model and AWGN
 - Receiver synchronization and demodulation

5G mmWave beam search

5G mmWave beam search video

NR 5G Link GUI Demo

How to learn more

- Go to 5G Toolbox product page www.mathworks.com/products/5g
- Watch the 5G Toolbox video
 - On YouTube
 - On 5G Toolbox product page
- Go to 5G Toolbox documentation page
- Consult 'MATLAB for 5G' page

Documentation	xamples Functions Sea		
CONTENTS Close			
« Documentation Home	5G Toolbox		
	Simulate, analyze, and test the physical layer of 5G communications systems		
Simulink 5G Toolbox	5G Toolbox™ provides standard-compliant functions and reference examples for the modeling, simulation, and verification of 5G communications systems. The toolbox supports link-level simulation, golden reference verification and conformance testing, and test waveform generation.		
Getting Started with 5G Toolbox	With the toolbox you can configure, simulate, measure, and analyze end-to-end communications links. You		
Downlink Channels	can modify or customize the toolbox functions and use them as reference models for implementing 5G		
Physical Layer Subcomponents	systems and devices.		
Signal Reception	The toolbox provides reference examples to help you explore baseband specifications and simulate the effects of RF designs and interference sources on system performance. You can generate waveforms and		
End-to-End Simulation	customize test benches to verify that your designs, prototypes, and implementations comply with the 3GPP		
Test and Measurement	5G New Radio (NR) standard.		
Code Generation and Deployment			
Aerospace Blockset	Getting Started		
Aerospace Toolbox	Learn the basics of 5G Toolbox		
Antenna Toolbox	Deurslink Channels		
Audio System Toolbox	5G NR downlink channels processing for physical signals and channels, transport channels, and control info		
Automated Driving System Toolbox	of the domain of an expression of the proposal organic and onlineos, autoport on interior, and control interior		
Bioinformatics Toolbox	Physical Layer Subcomponents		
Communications Toolbox	Low-level subcomponents for 5G NR channel processing		

Summary

- 5G Toolbox enables you to simulate, analyse, test 5G wireless communications systems
- Standard-compliant MATLAB functions based on Rel. 15 of 3GPP 5G NR standard
 - Waveform generation
 - Downlink & Uplink Physical Channels and Signals including
 - Link-level simulation including PDSCH and PUSCH Throughput Simulation
 - Cell search procedure with MIB decoding
 - LDPC and Polar Coding algorithms
 - TR 38.901 CDL and TDL Propagation Channels

Model Based Design for Implementing 5G NR

© 2017 The MathWorks, Inc.

5G Prototyping at Huawei

- Leverage existing mature solutions to build the system
- Develop the specific innovation such as new waveforms

Next generation wireless technology design, verification, and field testing.

Modem: Design and Simulation

Design, execute and verify modem in MATLAB/Simulink

Automatically generation of VHDL code

Deploy generated code on HW/FPGA

Model Based Design in Nokia 5G

ReefShark – Concentrated power for RF and baseband processing

NOKIA

ReefShark

Nokia Reefshark -video

NOKIA

Pushing the limits with inhouse silicon innovation.

Al capabilities embedded within radio and baseband processing

Compute optimized for all layers of the network edge

- RFIC and transceiver: massive MIMO Adaptive Antenna solution
- Digital Front End for LTE and 5G radio systems supporting massive MIMO
- Baseband Processor supporting 5G numerologies and processing needs

11 © 2018 Nokia

58

Model Based Design in Nokia 5G

Take away: Flexibility, Visibility and Capability to react through entire Design Flow

Model-Based Design

From Concept to Production

- Model multi-domain systems
- Explore and optimize system behavior in floating point and fixed point
- Collaborate across teams and continents
- Generate efficient code
- Explore and optimize implementation tradeoffs

- Automate regression testing
- Detect design errors
- Support certification and standards

Workflow for 5G NR Design and Prototyping

Test with Hardware and Over-the-Air Signals

- Test your algorithms with real signals and scenarios
- Deployment to SDR platforms or your own hardware

...Or Your Own Hardware HDL Coder and Embedded Coder to implement your design on FPGA and DSP platforms

Targetable Receiver/Transmitter Model

Key Features in HDL Coder

📣 MathWorks

Workflow Advisor Speeds Adoption

Generate Readable, Traceable Code

Design Space Exploration

Area(# LUTs, RAMs, DSPs)

Easily Identify Timing Bottlenecks Timing Optimization

between critical path Critical Path Report for and model my equalizer sim optimization/EqualizerAlgorithm **Summary Section** 15.884 ns Critical Path Delay : 24.784 ns stage1 sum 1 Critical Path Begin : Unit Delay input Critical Path End : Unit Delay : 17.506 ns Sum stage2 sum1 Highlight Critical Path: hdl prj\hdlsrc\my equalizer sim optimization\criticalPathEstimated.m tane1 sum2 Highlight Uncharacterized blocks: hdl pri\hdlsrc\my equalizer sim optimization\highlightCriticalPathEstimationOffendingBlocks.m -Cs(1) coeff stage1 Input : 19.128 ns **Critical Path Details** Sum stage3 s(1) coeff stage2 sum2 **Block Path** Propagation (ns) Delay (ns) ld a(2)(1) coeffOutput p : 14.262 ns _____ 0.2980 0.2980 Unit Delay -Ca(3)(1) coeff 6.5220 6.2240 a(2)(1)2 : 20.75 ns a(2)(1) coeff 3 6.5220 0.0000 SumA21 Sum stage4 gain coeff Sum_stage1_sum5 dtc dtc1 6.5220 0.0000 Δ SumA31 Filter 5 8.0380 1.5160 SumB31 6.2240 6 14.2620 qain 14.2620 0.0000 -C-15.8840 1.6220 8 Sum stage1 sum1 a(3)(1) coeff 17.5060 1.6220 Sum stage2 sum1 9 2 parameters 10 19.1280 1.6220 Sum stage3

Direct traceability

▶ 1 data out

: 24.754 n

Automatic Pipeline Insertion Timing Optimization

Automatic Resource Sharing

<u>0</u>K

<u>Cancel</u>

Help

Apply

Area Optimization

- <u>10 parallel filterbanks</u> implemented
- Data-rate = 100kHz, clk = 100MHz
- Multipliers are utilized at <u>100kHz</u>

Achieve results with less manual effort

IFM Engineering 3D time-of-flight camera FPGA

HDL Coder Floating Point Implementation Options

Native Floating Point

- IEEE-754 Single precision support
- Extensive math and trigonometric operator support
- Highly optimal implementations
 without sacrificing numerical accuracy
- Mix floating and fixed point operations in the same design

Using HDL Optimized IP Blocks

Image Processing IPs

Design and prototype video image processing systems

- Modeling hardware behavior of the algorithms
 - Pixel-based functions and blocks
 - Conversion between frames and pixels
 - Standard and custom frame sizes
- Prototyping algorithms on hardware
 - Efficient and readable HDL code
 - FPGA-in-the-loop testing and acceleration

Pixel Based Video Algorithm Library

- Analysis & Enhancement
 - Edge Detection, Median Filter
- Conversions
 - Chroma Resampling, Color-Space Converter
 - Demosaic Interpolator, Gamma Corrector, Look-up Table
- Filters
 - Image Filter, Median Filter, Bilateral Filter
- Morphological Operations
 - Dilation, Erosion,
 - Opening, Closing

- Statistics
 - Histogram
 - Image Statistics
- I/O Interfaces
 - Frame to Pixels, Pixels to Frame, FIL versions
- Utilities
 - Pixel Control Bus Creator
 - Pixel Control Bus Selector

Implementing LTE algorithms

LTE IPs and models

- Turbo Encoder
- Turbo Decoder
- Convolutional Encoder
- Convolutional Decoder
- CRC Encoder
- CRC Decoder

- PSS/SSS Detection
- MIB Recovery
- SIB1 Detection (post-17b)
- LTE Frequency Scanner
- Frame-to-samples / samples-to-frame
- Sample bus creator / selector
- Templates to connect MATLAB tests/golden
 reference to Simulink HW implementation

Other "HDL Optimized" Algorithms

- Filtering
 - Biquad
 - Interpolator/Decimator
 - LMS
- Wireless communications
 - FFT, NCO
 - QAM, BPSK, QPSK
 - Viterbi, Convolutional, RS, Turbo
- Deep learning

Verification & Validation

- Create a high-level system model and link to requirements documents
- The system model can serve as an executable specification and basis for more detailed models
- Validate requirements by executing your system prototype connected to user interfaces or plant hardware

HDL Verifier Reuse MATLAB/Simulink to automate verification setup

Model-Based Design

From Concept to Production

- Model multi-domain systems
- Explore and optimize system behavior in floating point and fixed point
- Collaborate across teams and continents
- Generate efficient code
- Explore and optimize implementation tradeoffs

- Automate regression testing
- Detect design errors
- Support certification and standards