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How to Get Started with Machine Learning?

get started with machine Iearning‘

About 611,000,000 results (0.63 seconds)
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Machine Learning Success Stories

Kinesis Health Technologies

Predicting a patient’s fall risk with
machine learning.
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Examples of Successful Machine Learning Applications

&> Fleet Data Analytics New Capabilities
- MATLAB apps
Q Energy Forecasting + AutoML

= Signal Processing with
Eﬂ Manufacturing Analytics Machine Learning

= C/C++ Code Generation
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Examples of Successful Machine Learning Applications

&= Fleet Data Analytics
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Fleet Data Analytics

Design Decisions
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What Level of Data?

Equipment s kﬂ & +

Trip/Session L D D D
Messages L}@ @ @

Signals L> J\/\" J\/‘" JV\"
Time — Value pairs L> @
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What Type of Question?

“For Each”

A 4

For each (trip, day, serial #, customer,
etc) in the fleet data set, calculate
some Key Performance Indicator
(KPI*) given parameters XYZ".

Question Type

“Across All”

!

Across All (data) in the fleet data set,
calculate descriptive statistics of
specific variables (min, max, median,
count, etc.) to summarize and
visualize (histograms).
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Scale to Large Collections of Data with Datastore

Create a datastore from all CSV files

ds = datastore('x.csv')

Read a single file of data

data = read(ds);

Reset the datastore back to the first file

reset(ds);

Find the maximum value of “Y™ in each file

X=[();

while hasdata(ds)
data = read(ds);
X(end+1l) = max(data.Y);

end

Available Datastores

General

datastore

spreadsheetDatastore

tabularTextDatastore

fileDatastore

Database

databaseDatastore

Image

imageDatastore

denoisingImageDatastore

randomPatchExtractionDatastore

pixellLabelDatastore

augmentedImageDatastore

Audio

audioDatastore

Predictive
Maintenance

fileEnsembleDatastore

simulationEnsembleDatastore

Simulink SimulationDatastore
Automotive mdfDatastore

Custom subclass matlab.io.Datastore
Transformed | transform an existing datastore
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Performing “Across All” Calculations with Tall

Create a datastore from a collection of CSV files, and select the "Time" and

"EngineSpeedRPM" variables. ¢ Fgerel ESREN
File Edt View Jhset Tooli Desitop Window Help -
ds = datastore('EngineDatax.csv',... NEde R NB9QL- Q08 =D
"SelectedVariableNames", ["Time","EngineSpeedRPM"]);
O—
Create tall table: | "k

t = tall(ds);

Convert to tall timetable: 000

tt = table2timetable(t); —
2500
Plot EngineSpeedRPM vs. Time:

plot(tt.Time, tt.EngineSpeedRPM)| SULN

1500

= Visualizations ' i

1000 ¢

- Data preprOCGSSi ng 00 0% 00 00:04:10 000420 00 0420 o0 04 &0

= Machine Learning
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Exploring Fleet Data with Unsupervised Learning

MACHINE LEARNING

\ f\ /
SUPERVISED
LEARNING

\

UNSUPERVISED
LEARNING
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Unsupervised Learning for Operational Mode Clustering

Plot the raw data: o
figure; 6000 ;
plot(t.Speed_0OBD_,t.EngineRPM, '.k") i
xlabel('Vehicle Speed'); song | e -
ylabel('Engine Speed'); & gk 3 -
"2 ':‘ Sueig :
Cluster the data with the K-Means algorithm: §“°°°' P 31'
(7] R PURR PR - 7 T
g O W 1 [ :
X = [t.Speed_O0BD_,t.EngineRPM]; & 3000} .!I i|i""|||||"| -l
IDX = kmeans(X,5,"Distance","cosine"); -, "||| I,mi"“" i o
. ‘:: i ' . N "" . 4
. zooof- Al |||| Tt
Plot results of the clustering: “ | ,H il I
' 1 |"|
I.l |II : .""""
gscatter(t.Speed_0BD_,t.EngineRPM, IDX); ‘°°°":,.ls,5;§g-! it g M
xlabel('Vehicle Speed'); g 8
ylabel('Engine Speed'); 0 | | . .
0 10 20 30 40 50 60
Vehicle Speed
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Deploying Fleet Analytics

“Cold Storage”

Historic data:

« Batch processing

» Large data on cluster

» Explore long term trends
* Build models

Spark®

AB EXPO

Vehicle data, driver
profiles

= W

“Hot Storage”

Streaming data:

* Near real-time

* Test and implement model
for new data

« Stream processing

15



Fleet Analytics Streaming Architecture
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Fleet Analytics in Practice: Volkswagen Data Lab

Develop technology building block for tailoring
car features and services to individual

= Driver and Fleet Safety
= Driver Coaching
= Driver-Specific Insurance

Data sources
= Logged CAN bus data and travel record

Results
= Proof-of-concept model for “telematic fingerprint
= Basis for the “pay-as-you-drive” concept

”

Source: “Connected Car — Fahrererkennung mit MATLAB*
Julia Fumbarev, Volkswagen Data Lab
MATLAB EXPO Germany, June 27, 2017, Munich Germany

EXPO
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https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/files/2017/expo-de/klassifizierung-von-individuellem-fahrverhalten.pdf

Fleet Analytics

Equipment
Expertise
Design Specs

Operating Modes
Operating Conditions

Machine Learning

Statistical Analysis
Unsupervised Learning

Machine Learning + X

&\ MathWorks
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Examples of Successful Machine Learning Applications

Q Energy Forecasting

&\ MathWorks
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The Need for Energy Forecasts
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How Energy Forecasting Works

Historical Data
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Building Forecast Models with Regression Techniques

'd N\

MACHINE LEARNING

\ /

/ N\

s N s N\

SUPERVISED UNSUPERVISED
LEARNING LEARNING
CLUSTERING

\, A

K-Means, K-Medoids ‘
Fuzzy C-Means

Hierarchical

Gaussian Mixture

Neural Networks

Hidden Markov
Model
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Using Energy Forecasting Models

New Data
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Deploying Energy Forecasts

Dashboards for operators
and traders | .

L—‘ BN s
~0

API for App Developers
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Combining Forecasting with Optimization

“When should | operate my generators to maximize the return on my investment?”

Generator Schedule

Optimization Problem:

Constraints:

1) Meet forecasted demand
2) Operational constraints
3) Etc.

ralor

Gene

Peaker || |
"D BB DM M A
R R L EEEEEREEEEEEEE Y
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Energy Forecasting in Practice: Naturgy Energy Group S.A.

Challenge

Maximize margins in energy trading by predicting
available supply and peak demand

Solution

Use MATLAB to build and optimize models
that incorporate historical data, weather forecasts,
and regulatory rules

Results
= Response time reduced by months

= Productivity doubled
= Program maintenance simplified

Link to user story

Portomouros hydroelectric dam.

“Because we need to rapidly respond to shifting production
constraints and changing demands, we cannot depend on
closed or proprietary solutions. With MathWorks tools we get
more accurate results — and we have the flexibility to develop,
update, and optimize our models in response to changing

needs.”
- Angel Caballero, Gas Natural Fenosa

&\ MathWorks
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http://www.mathworks.com/company/user_stories/gas-natural-fenosa-predicts-energy-supply-and-demand.html%3Fby=company

Fleet Analytics

Equipment
Expertise
Design Specs

Operating Modes
Operating Conditions

Machine Learning

Statistical Analysis
Unsupervised Learning

Machine Learning + X

Energy
Forecasting

Electrical Grid
Expertise

Seasonality
Weather Effects
Generator Characteristics

Machine Learning

Time Series Modeling
Regression

&\ MathWorks
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AutoML

4 Model  f£4 tcauto R
Selection
= Build many machine learning models memm— Decision Tree?
: : : ?
- Find a good model without becoming R SVM;)
t parameter KNN*
an exper Optimization "| Ensemble?
Import Preprocess Extract Train Deploy &
Data Data Features Model Integrate
Wavelet Feature
Scattering VvV Selection

&\ MathWorks
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AutoML “in action”

! cY ’ . ( . " » - . -
» ) ) . ol AY Waves T 1 as Al

S «» woveletScattering( 'Signaliength’ N, spplingf requency” ,50);
Wieatures « featureMatrix(sf, thisSignal(1:N), 'Transfora®, 'Log’');

! i - - .’ - - - }

this across signals <thisSignal> i accumulate <allFeatures> wi

» > » f ot

step 2 elect top <teath> fteatures according to feature ranking, ©.g. MRME Min objective vs. Number of functicn evaluations

[srmrFeatures , scores] « fscmrar(allfeatures, “‘class’);

trainFeatures = allFeatures(:, [wrarfFeatures(i:nuePredictorsToUse) true]); X :':mt_:):r'::"
Cument enmo

L Step S - it i 20d mode]l from 1909 i1teratd ; f 1-step mOodel sels
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Examples of Successful Machine Learning Applications

Eﬂ Manufacturing Analytics

&\ MathWorks
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What is Manufacturing Analytics?

Definition: Apply modeling (Al) to process and sensor data to maximize operational
performance

Key Use Cases:

1.  Automate the monitoring of manufacturing process
2. Ensure product quality

3. Optimize yield of complex production processes

&\ MathWorks
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Challenges in Applying Al to Manufacturing

Lots of Data — much in “Data Historians” (SCADA, LIMS, OSISoft PI)

Reliable measurements or modeling
— Sensor failures
— Hidden variables

Use of many different tools
— Limited Predictive modeling
— Handle streaming data
— Customization

&\ MathWorks
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Uncover Hidden Variables with Process Modeling

Plant Production History (2010-2015)
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Case Study: Anomaly Detection

&\ MathWorks
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Case Study: Anomaly Detection

1. Cluster with DBSCAN 2. One-class SVM

Ohservation
1 Z {0 Outéer Thveshold | 1
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Deployment

OPC, ODBC, =
Integration with Data Historians JDBC 4 |[=
- OPC Toolbox (Database tbx via ODBC @ T =
or JDBC) connects with Pl Server £ AN
Pl Data
Archive
Customize Analytics
Pl System Mg'?II_IZB Delivery
Explorer function MATLAB Production Server : . :
‘ — [ 5 = Accessing insights via
— (" g GUI critical for plant staff
¢ and process engineers
Pl Asset Write _
| ——  Framework B ooint = Build a custom dashboard

with App Designer
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Fleet Analytics

Equipment
Expertise

Design Specs
Operating Modes
Operating Conditions

Machine Learning

Statistical Analysis
Unsupervised Learning

Machine Learning + X

Energy
Forecasting

Electrical Grid
Expertise

Seasonality
Weather Effects
Generator Characteristics

Machine Learning

Time Series Modeling
Regression

Manufacturing
Analytics

Manufacturing
Expertise

Process Equipment
Variables & Set Points
Parameter Impact

Machine Learning
Anomaly Detection
Regression
Multivariate Statistics

‘\ MathWorks
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Machine Learning + Signal Processing

Data Preprocessing
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Smoothing

Power Spectrum
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Feature Engineering
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Find Al Poab s

Time domain

Find peaks Find signal patterns
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Kinesis Health Technologies

Predicting a patient’s fall risk with
machine learning.

Angular Velocity [deg/s)
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From Desktop to Production

C/C++

2R

Reasons for Updates:
Found a better model
New data became available
Business needs change

&\ MathWorks
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Automatic C/C++ Code Generation

1. Prediction for most Classification and Regression models

2. Update deployed models without regenerating code

— SVM, Decision Trees, Linear Models

1. Fixed-Point support

— SVM, Decision Trees, Ensemble of Trees
— Shallow Neural Network (through Simulink)

1. Integrate with Simulink models as

MATLAB Function Block

XX 4

label

myTreePredict  gcore

v

MATLAB Function

Sgres

3V Legend
TV Reseiting T
ssrerchypet
¥ Duta Dt
e
v

ng Type

¥ B Alccation

function [label, score] = myTreePredict(X)
Mdl = loadLearnerForCoder('treeMdl');
[label,score] = predict(Mdl, X);

end

-
| )
i
60 . @
M
Inteqrate MATLAB
with Other Languages
‘\ MathWorks 42



https://www.mathworks.com/products/matlab/matlab-and-other-programming-languages.html

Examples of Successful Machine Learning Applications

&> Fleet Data Analytics New Capabilities
- MATLAB apps
Q Energy Forecasting « AutoML

= Signal Processing with Machine Learning
Eﬂ Manufacturing Analytics . c/c++ Code Generation
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------ == -, _ [cic++code | .
[ Apps ] """ _ [ AutoML ] : | Generation |

N 3354 1306t [3)

+

Fleet Data Analytics Signal Processing

Industry Knowledge _
Energy Forecasting

Manufacturing Analytics

Application Knowledge
Medical Devices Mining
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Learn More

Get Started for Free
e )

MATLAB Onramp

Get started quickly with the basics of
MATLAB".

» Details and launch

Machine Learning Onramp
An interactive introduction to practical machine

learning methods for classification problems.

» Details and launch

Deep Learning Onramp
Get started with deep learning techniques to
perform image recognition.

» Details and launch

Training Courses
MATLAB Fundamentals (3 days)

MATLAB for Data Processing and
Visualization (1 day)

Processing Big Data with MATLAB (1 day)
Statistical Methods in MATLAB (2 days)
Machine Learning with MATLAB (2 days)

Signal Preprocessing and Feature
Extraction with MATLAB (1 day)

Deep Learning with MATLAB (2 days)

Accelerating and Parallelizing MATLAB
Code (2 days)

Practical Data Science with
MATLAB Specialization

XX XN 49 14ratngs

Enroll for Free
Starts Dec 03

Fmancial aid avallable

- Exploratory Data Analysis

- Data Processing and Feature Engineering

- Predictive Modeling and Machine Learning

- Data Science Project

&\ MathWorks

45



MATLAB

EXPO

p ) MathWorks




