MATLAB EXPO

Machine Learning Proven Applications and New Features

Seth DeLand

How to Get Started with Machine Learning?

Q get started with machine learning

About 611,000,000 results (0.63 seconds)

Machine Learning Success Stories

Kinesis Health Technologies

Predicting a patient's fall risk with machine learning.

Kinesis Q							
1	Å	X	1 Å	1	n		AL
Average since selectly private				10			
State weathy wandeds (for	1			-		-	
Average state longh (un)				-			
Elizate sample consisting (%)						-	
Service Services		11	1 1				
Time taken to stand as							
Time labors to all (a)				-			
Number of gal cycles				-0		-	
Number of degree		HOH.					
Calance (stepsme)		Hei					
The Prove 11	-			•			
Average using the (i)				-	•	-	
Swing time senability (%)						-	
Average alterna from (c))		•	-			
Diarce line unidably (%)				-			
Average attain time (c)	3	_		•		-	
Bink tro wishing the		~				-	
Average star free in			+		0	-	
They live vanishing (%)			+			-	
Annual State and	-						
Double suggest variability (%)	~						
Annual study append			-				
Bright Resport Learning (%)		~	-				
100-000 C							
Particle Des 11	-						
Parties the st						-	•
take of per-large in participant large linear							-
Time taken to turn ini							
Bushes of steam in laws							
he sector of							
the paper and the						1	2
11 No.		Time	Length	(Welcothy	Futo	~ Variability	m- Average

Machine Learning

-

Machine Learning

Industry Knowledge

Application Knowledge

Your Own Expertise

Examples of Successful Machine Learning Applications

Fleet Data Analytics

) Energy Forecasting

Manufacturing Analytics

New Capabilities

- MATLAB apps
- AutoML
- Signal Processing with Machine Learning
- C/C++ Code Generation

Examples of Successful Machine Learning Applications

Fleet Data Analytics

O Energy Forecasting

Manufacturing Analytics

Fleet Data Analytics

What Level of Data?

What Type of Question?

Scale to Large Collections of Data with Datastore

Create a datastore from all CSV files

ds = datastore('*.csv')

Read a single file of data

data = read(ds);

Reset the datastore back to the first file

reset(ds);

Find the maximum value of "Y" in each file

Available Datastores					
General	datastore				
	spreadsheetDatastore				
	tabularTextDatastore				
	fileDatastore				
Database	databaseDatastore				
Image	imageDatastore				
	denoisingImageDatastore				
	randomPatchExtractionDatastore				
	pixelLabelDatastore				
	augmentedImageDatastore				
Audio	audioDatastore				
Predictive	fileEnsembleDatastore				
Maintenance	simulationEnsembleDatastore				
Simulink	SimulationDatastore				
Automotive	mdfDatastore				
Custom	subclass matlab.io.Datastore				
Transformed	transform an existing datastore				

Performing "Across All" Calculations with Tall

Create a datastore from a collection of CSV files, and select the "Time" and "EngineSpeedRPM" variables.

```
ds = datastore('EngineData*.csv',...
    "SelectedVariableNames",["Time","EngineSpeedRPM"]);
```

Create tall table:

t = tall(ds);

Convert to tall timetable:

tt = table2timetable(t);

Plot EngineSpeedRPM vs. Time:

plot(tt.Time,tt.EngineSpeedRPM)

- Visualizations
- Data preprocessing
- Machine Learning

Exploring Fleet Data with Unsupervised Learning

Unsupervised Learning for Operational Mode Clustering

Plot the raw data:

```
figure;
plot(t.Speed_OBD_,t.EngineRPM,'.k')
xlabel('Vehicle Speed');
ylabel('Engine Speed');
```

Cluster the data with the K-Means algorithm:

```
X = [t.Speed_OBD_,t.EngineRPM];
IDX = kmeans(X,5,"Distance","cosine");
```

Plot results of the clustering:

```
gscatter(t.Speed_OBD_,t.EngineRPM,IDX);
xlabel('Vehicle Speed');
ylabel('Engine Speed');
```


Deploying Fleet Analytics

Fleet Analytics Streaming Architecture

Fleet Analytics in Practice: Volkswagen Data Lab

Develop technology building block for tailoring car features and services to individual

- Driver and Fleet Safety
- Driver Coaching
- Driver-Specific Insurance

Data sources

Logged CAN bus data and travel record

Results

- Proof-of-concept model for "telematic fingerprint"
- Basis for the "pay-as-you-drive" concept

Source: "<u>Connected Car – Fahrererkennung mit MATLAB</u>" Julia Fumbarev, Volkswagen Data Lab MATLAB EXPO Germany, June 27, 2017, Munich Germany

MATLAB EXPO

17

Machine Learning + X

Fleet Analytics

Equipment Expertise

Design Specs Operating Modes Operating Conditions

Machine Learning

Statistical Analysis Unsupervised Learning

Examples of Successful Machine Learning Applications

Fleet Data AnalyticsO Energy Forecasting

Manufacturing Analytics

How Energy Forecasting Works

Building Forecast Models with Regression Techniques

Using Energy Forecasting Models

Deploying Energy Forecasts

Dashboards for operators and traders

API for App Developers

Combining Forecasting with Optimization

"When should I operate my generators to maximize the return on my investment?"

Optimization Problem:

Minimize:

Cost of generating electricity

Constraints:

- 1) Meet forecasted demand
- 2) Operational constraints

3) Etc.

Energy Forecasting in Practice: Naturgy Energy Group S.A.

Challenge

Maximize margins in energy trading by predicting available supply and peak demand

Solution

Use MATLAB to build and optimize models that incorporate historical data, weather forecasts, and regulatory rules

Results

- Response time reduced by months
- Productivity doubled
- Program maintenance simplified

Portomouros hydroelectric dam.

"Because we need to rapidly respond to shifting production constraints and changing demands, we cannot depend on closed or proprietary solutions. With MathWorks tools we get more accurate results — and we have the flexibility to develop, update, and optimize our models in response to changing needs."

- Angel Caballero, Gas Natural Fenosa

Machine Learning + X

Fleet Analytics

Equipment Expertise

Design Specs Operating Modes Operating Conditions

Machine Learning

Statistical Analysis Unsupervised Learning Energy Forecasting

Electrical Grid Expertise

Seasonality Weather Effects Generator Characteristics

Machine Learning

Time Series Modeling Regression

Machine Learning apps

- Try out many models
- Compare Results
- Get to a reasonable model without worrying about the details

Perform Hyperparameter Optimization in apps

AutoML

AutoML "in action"

% Step 1: apply Wavelet scattering to extract features sf = waveletScattering('SignalLength',N, 'SamplingFrequency',50); Wfeatures = featureMatrix(sf,thisSignal(1:N), 'Transform', 'Log'); % do this across signals <thisSignal> and accumulate <allFeatures> with labels

% Step 2: select top <featN> features according to feature ranking, e.g. MRMR
[mrmrFeatures , scores] = fscmrmr(allFeatures, 'class');
trainFeatures = allFeatures(:, [mrmrFeatures(1:numPredictorsToUse);true]);

% Step 3: Select optimized model from 100 iterations of 1-step model selection modelAuto = fitcauto(trainFeatures,'class', 'Learners','all', 'MaxObjectivetvaluetions',100);

Examples of Successful Machine Learning Applications

Fleet Data Analytics

Energy Forecasting

Manufacturing Analytics

What is Manufacturing Analytics?

Definition: Apply modeling (**AI**) to **process** and **sensor data** to maximize operational performance

Key Use Cases:

- 1. Automate the monitoring of manufacturing process
- 2. Ensure product quality
- 3. Optimize yield of complex production processes

Challenges in Applying AI to Manufacturing

Lots of Data – much in "Data Historians" (SCADA, LIMS, OSISoft PI)

Reliable measurements or modeling

- Sensor failures
- Hidden variables

Use of many different tools

- Limited Predictive modeling
- Handle streaming data
- Customization

Uncover Hidden Variables with Process Modeling

Case Study: Anomaly Detection

Case Study: Anomaly Detection

1. Cluster with DBSCAN

2. One-class SVM

Deployment

Integration with Data Historians

MATLAB EXPO

 OPC Toolbox (Database tbx via ODBC or JDBC) connects with PI Server

Customize Analytics Delivery

- Accessing insights via GUI critical for plant staff and process engineers
- Build a custom dashboard with App Designer

Machine Learning + X

Fleet Analytics

Equipment Expertise

Design Specs Operating Modes Operating Conditions

Machine Learning

Statistical Analysis Unsupervised Learning Energy Forecasting

Electrical Grid Expertise

Seasonality Weather Effects Generator Characteristics

Machine Learning

Time Series Modeling Regression

Manufacturing Analytics

Manufacturing Expertise

Process Equipment Variables & Set Points Parameter Impact

Machine Learning Anomaly Detection Regression Multivariate Statistics

Machine Learning + Signal Processing

Data Preprocessing

Smoothing

MATLAB EXPO

Feature Engineering

Bandwidth measurements

Frequency domain

Find signal patterns

Spectral statistics

Kinesis Health Technologies

Predicting a patient's fall risk with machine learning.

From Desktop to Production

Reasons for Updates:

- Found a better model
- New data became available
- Business needs change

• • • •

Automatic C/C++ Code Generation

- 1. Prediction for most Classification and Regression models
- 2. Update deployed models without regenerating code
 - SVM, Decision Trees, Linear Models
- 1. Fixed-Point support
 - SVM, Decision Trees, Ensemble of Trees
 - Shallow Neural Network (through Simulink)
- 1. Integrate with Simulink models as MATLAB Function Block

MATLAB EXPO

Integrate MATLAB with Other Languages

Examples of Successful Machine Learning Applications

Fleet Data Analytics

) Energy Forecasting

Manufacturing Analytics

New Capabilities

- MATLAB apps
- AutoML
- Signal Processing with Machine Learning
- C/C++ Code Generation

Machine Learning

Fleet Data Analytics

Industry Knowledge

Manufacturing Analytics

Signal Processing

Energy Forecasting

Application Knowledge

Medical Devices

Mining

Learn More

Get Started for Free

MATLAB Onramp Get started quickly with the basics of MATLAB[®].

» Details and launch

Machine Learning Onramp

An interactive introduction to practical machine learning methods for classification problems. > Details and launch

Deep Learning Onramp Get started with deep learning techniques to perform image recognition.

» Details and launch

Training Courses

MATLAB Fundamentals (3 days)

MATLAB for Data Processing and Visualization (1 day)

Processing Big Data with MATLAB (1 day)

Statistical Methods in MATLAB (2 days)

Machine Learning with MATLAB (2 days)

Signal Preprocessing and Feature Extraction with MATLAB (1 day)

Deep Learning with MATLAB (2 days)

Accelerating and Parallelizing MATLAB Code (2 days)

★★★★★ 4.9 14 ratings

Enroll for Free Starts Dec 03

Financial aid available

- Exploratory Data Analysis
- Data Processing and Feature Engineering
- Predictive Modeling and Machine Learning
- Data Science Project

