
Collaborative Software Development in 

MATLAB and Simulink

Adam Sifounakis

MATLAB Language Product Manager



How complex are your 

projects?

▪ Hundreds of files?

▪ Many file dependencies?

▪ Complex setup required?

▪ …?



How many people are 

involved in your project?

▪ Dozens of developers?

▪ Cross-disciplinary teams?

▪ Teams across the world?

▪ …?



How do you ensure 

project quality?

▪ Systematic testing?

▪ Coding/modeling standards?

▪ Regulatory oversight?

▪ Trust that it just works?

▪ …?



BACKLOG
DEFINITION 

OF READY

DEFINITION 

OF DONE
DELIVERY

System

Simulation

Rapid 

Prototyping

Target

Testing

DEVELOPEVALUATE

Viable system architecture?

Works in production?

Suitable behavior?

Feature

Release

Develop quality software with MATLAB and Simulink

▪ Good software development 

practices help improve code 

and model quality

▪ The tools and practices we 

discuss today support Agile 

development workflows



Robust, collaborative development requires…

Environment 
Setup and 
Automation

Dependency 
and Impact 

Analysis

Source Control 
Integration

Componentized 
Development

Sharing and 
Deployment

Testing and 
Verification



Projects

Environment 
Setup and 
Automation

Dependency 
and Impact 

Analysis

Source Control 
Integration

Componentized 
Development

Sharing and 
Deployment

Testing and 
Verification

Robust, collaborative development requires…



Agenda

Setting up your development environment

Managing team workflows

Developing better code and models

Testing and verification



Development Challenges

“It works on my computer, but not on yours…”

▪ Incomplete set of files?

▪ Which files are missing?

▪ Different environment?

▪ How to get started with a project?

▪ …



Managing Your Work with Projects

1. Create project



Managing Your Work with Projects

1. Create project

2. Set path and startup tasks



Managing Your Work with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies



Managing Your Work with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files

Identify and run tests locally

…and on Continuous Integration (CI) servers



Managing Your Work with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files

5. Integrate source control



Projects in MATLAB and Simulink

▪ Manage your files and path

▪ Analyze file dependencies

▪ Function refactoring

▪ Run startup & shutdown tasks

▪ Create project shortcuts

▪ Label and filter files

▪ Integrate source control

15



Agenda

Setting up your development environment

Managing team workflows

Developing better code and models

Testing and verification



Team-Based Development Challenges

“Someone else broke my code…”

▪ Develop code without affecting others?

▪ Identify the source of development conflicts?

▪ Resolve development conflicts?

▪ …



Source Control

▪ A system to manage changes to code, models, documents, etc.

▪ Benefits of source control:

– Maintain backups, history, and ability to restore

– Track changes and responsibility

– Reconcile conflicting changes

– Generate discussion

– Save you from yourself



Source Control Integration

▪ Manage your code and 

models from within 

MATLAB and Simulink

▪ Git integrated into:

– Projects

– Current Folder browser

▪ Use Comparison Tool to 

view and merge changes 

between revisions



Comparison Tool and 3-way merge resolution

MATLAB



Simulink

Comparison Tool and 3-way merge resolution



Managing Complexity with Model and Project References

Model Reference Project Reference



Agenda

Setting up your development environment

Managing team workflows

Developing better code and models

Testing and verification



What defines a “better” design?

▪ Faster?

▪ More memory efficient?

▪ Better organized?

▪ More stable?

▪ More portable?

▪ Easier to maintain?

▪ …

YES!



Developing robust software systems in MATLAB and Simulink

▪ Writing better and faster code

▪ Reduce complexity with refactoring 

▪ Integrating with other languages and tools

▪ Sharing and reuse



Upgrading to the Latest Version of MATLAB and Simulink

▪ Code Compatibility Report

▪ Upgrade Advisor

Link to documentation

for updates

Go directly to the

line of code
Recommended actions

Also have Model, Code Generation, 

and Performance Advisors



Simplify Function Argument Validation and Error Checking



Improving Code and Model Performance

▪ MATLAB Profiler

– Flame graph to highlight the largest 

code bottlenecks

– Total number of function calls

– Time per function call

– Statement coverage of code

▪ Performance Advisor in Simulink

– Create baselines to compare against

– Review recommendations and 

automatically apply changes

28



Speed up Your Development

▪ Context-aware coding guides

– Automatically suggest functions, 

variables, files, and Name-Value pairs

▪ Model layout tools

– Automatically clean up messy and 

complex models

29



Quickly and Safely Refactoring – MATLAB Code

▪ Break down large, complex codes and models into reusable and easier to maintain 

components

30



Quickly and Safely Refactoring – Simulink Models



Quickly and Safely Refactoring – Function and Model Names



Integrating with other languages

Calling Libraries Written in Another Language 

From MATLAB

Calling MATLAB from Another Language

• Java

• Python

• C/C++
• Fortran

• COM components and ActiveX® controls

• RESTful, HTTP, and WSDL web services

• Java

• Python

• C/C++
• Fortran

• COM Automation server



Integrating with other languages



Sharing your work

▪ Co-authors and development teams

– Projects

▪ End-user with MATLAB and Simulink

– Toolbox or App

▪ End-user without MATLAB and Simulink

– Standalone and web applications

– Language-specific libraries 

– Generated standalone code

– Microservice APIs

35

MATLAB Compiler, Simulink Compiler

MATLAB Compiler SDK

Embedded Coder, HDL Coder, PLC Coder, GPU Coder, …

MATLAB Production Server



Agenda

Setting up your development environment

Managing team workflows

Developing better code and models

Testing and verification



Software Maintenance – The hidden cost of development

▪ How do you ensure code and models 

don’t break over time?

▪ How do you keep new features from 

breaking existing features?

▪ How do you maintain confidence that 

your system is working as expected?

▪ How do you ensure that your software 

is future-proof?

37
M

a
in

ta
in

a
b

il
it

y
 r

a
ti

n
g

Journal paper: “Faster issue resolution with higher technical 
quality of software”, Software Quality Journal, 2011



Test early, test often, test automatically

▪ Reduce risk of software breaking

▪ Catch problems early

▪ Improve quality

▪ Document expected behaviour

Credit: http://geek-and-poke.com/

No

YesDo I care if it 

actually works?
You need 

testing!

Do I need 

testing?

You might not 

need testing

http://geek-and-poke.com/


MATLAB Testing Frameworks

▪ MATLAB Unit Testing Framework

▪ Performance Testing Framework

▪ Mocking Framework

▪ App Testing Framework

39



Verification and Validation in Simulink

40

▪ Trace requirements to architecture, design, tests, and code

▪ Verify your design meets requirements and is free of critical run-time errors

▪ Check compliance and measure quality of models and code

▪ Generate test cases automatically to increase test coverage

▪ Produce reports and artifacts, and certify to standards (such as DO-178 and ISO 26262).

https://www.mathworks.com/solutions/aerospace-defense/standards/do-178.html
https://www.mathworks.com/solutions/automotive/standards/iso-26262.html


Automated Testing with Continuous Integration (CI)

▪ A system to automate the building, testing, integration, and deployment of code as it 

is being developed and maintained

▪ Popular CI systems: Jenkins, Travis, CircleCI , Azure DevOps, and others…

▪ Benefits:

– Detect integration bugs early

– Allow you to stop bugs from being accepted

– Track and report testing history

– Flexible testing schedules and triggers



MATLAB Plugin for Jenkins

▪ Install MATLAB Plugin for 

Jenkins directly from the 

Jenkins Plugin Manager

▪ Easily connect and configure 

MATLAB with Jenkins

▪ Schedule automatic code 

and model testing

– MATLAB Unit Test Framework

– Simulink Test



Testing Reports in Jenkins

▪ View testing results

▪ View code coverage

▪ View testing reports

43



Summary



Summary

▪ MATLAB and Simulink can take you all the way from idea to production

▪ Save time and effort with good software and modeling practices

▪ Projects bulletproof your collaborative development workflows

45



MATLAB and Simulink

are the easiest and 

most productive environments 

for engineers and scientists



47


