
1© 2015 The MathWorks, Inc.

Software Development Practices

within MATLAB

Emmanuel Blanchard

2

How do we manage all that at MathWorks?

▪ Thousands of new features

every year

▪ Over 2000 developers

▪ Different time zones, …

3

What are your software development concerns?

▪ Speed

▪ Development Time

▪ Cost

▪ Compatibility

▪ Documentation

▪ Reusability

▪ Effective Testing

▪ Integration

▪ Badly written code

▪ Ease of Collaboration

▪ Legacy Code

▪ Liability

▪ Maintainability

▪ Model Risk

▪ Robustness

▪ Developer Expertise

▪ Software Stack Complexity

▪ …?

4

Software development practices can help

Treat your software like an asset → reuse it

Developers often spend 4X the effort to maintain vs build software

…but this doesn’t need to be true!

M
a

in
ta

in
a

b
il
it

y
 r

a
ti

n
g

Journal paper: “Faster issue resolution with higher technical

quality of software”, Software Quality Journal, 201100

5

Software development practices can help

▪ Software development approaches like Agile help improve code quality

▪ The tools and practices we discuss today support Agile development

6

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

7

How do you currently manage your files and paths?

▪ One big folder of files?

▪ Many folders of files?

▪ Organize your code in packages?

▪ Manual path management?

8

MATLAB Path Workspace Data C Compiler Apps & Toolboxes …

Successful collaborative development requires …

▪ Same source code, tests, doc, requirements, …

▪ Consistent, shared environment

▪ Integration with source control

9

Projects (MATLAB + Simulink Projects)

▪ Manage your files and path

▪ Analyze file dependencies

▪ Function refactoring

▪ Run startup & shutdown tasks

▪ Create project shortcuts

▪ Label and filter files

▪ Integrate source control

17

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

18

How do you keep track of and share your code as it changes?

▪ Do you:

– make copies of your code?

– e-mail yourself copies of your code?

– keep a spreadsheet of changes?

▪ Or do you not keep track of your changes?

There’s a better way!

!!!

19

Source Control

▪ A system to manage changes to code,

documents, etc.

▪ Maintain backups, history & ability to restore

▪ Track changes and responsibility

▪ Simplify reconciling conflicting changes

20

Source Control integration

▪ Manage your code from within

the MATLAB Desktop

▪ Git integrated into:

– Projects

– Current Folder browser

▪ Use Comparison Tool to view and

merge changes between revisions

21

Repo

Co-authoring workflows

Creating a repo:

▪ Initialize

▪ Add

▪ Clone

Making changes:

▪ Commit

▪ Push

▪ Branch

▪ Merge

branch

Repo

Repo

Repo Repo

commit
merge request

22

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

23

What defines “better” code?

▪ Better organized?

▪ Smaller?

▪ Faster?

▪ More stable?

▪ More portable?

▪ Easier to maintain?

▪ …

YES!

24

Writing more robust code

>> y = myfunc(1:5)

Index exceeds matrix dimensions.

Error in mypkg1.mypkg1a.mypkg1ab.myfunc1 (line 9)

y(idx) = u(idx)*log(u_hat(idx))+(1-u(idx))*log(1-u_hat(idx));

Error in mypkg2.mypkg2a.myfunc2 (line 5)

y = mypkg1.mypkg1a.mypkg1ab.myfunc1(myVar1 .* myVar2);

Error in mypkg3.mypkg3a.myfunc3>@(x)mypkg2.mypkg2a.myfunc2(x) (line 4)

y = arrayfun(@(x) mypkg2.mypkg2a.myfunc2(x), myVar);

Error in mypkg3.mypkg3a.myfunc3 (line 4)

y = arrayfun(@(x) mypkg2.mypkg2a.myfunc2(x), myVar);

Error in myfunc (line 10)

25

▪ validateattributes

▪ isempty, isnan, isfinite, …

▪ narginchk

▪ inputParser

▪ Property validation for classes

Writing more robust code – Validating inputs

>> myfunc(1:5)

Error using myfunc (line 4)

Expected input to be of size 1x3, but it is of size 1x5.

>> myfunc([2 3 1])

Error using myfunc (line 4)

Expected input to be increasing valued.

26

Writing more robust code – Handling errors more elegantly

▪ error and warning

– Use identifiers

▪ Mexception

▪ try/catch

▪ errordlg and warndlg

27

Writing faster code – MATLAB Profiler

▪ Total number of function calls

▪ Time per function call

▪ Highlights largest code bottlenecks

▪ Statement coverage of code

28

Writing code faster – Programming aids in the Live Editor

▪ Automatically closed parentheses,

loops, and conditional blocks

▪ Context-aware coding guides

– Automatically suggest function names

variables, or file names

– List available Name/Value pairs

29

Writing code faster – Quickly and safely refactoring code

▪ Live Editor shortcuts to refactor blocks of code into functions

30

Writing code faster – Quickly and safely refactoring code

▪ Function refactoring

across files in Projects

31

Simple code quality and complexity assessment – checkcode

▪ Analyze all warnings and errors in a code

▪ McCabe Cyclomatic Complexity

– Measures complexity based on the number of linearly independent paths through a code

32

Writing more portable code – Code that runs everywhere

▪ Operating System-aware code

– fullfile

– ispc, ismac, isunix

▪ More reliable portability with Projects

– Consistent path management

– Automated startup/shutdown procedures

– Built-in file dependency analysis

>> fullfile("..","data","2019","April")

Windows: "..\data\2019\April"

Mac/Linux: "../data/2019/April"

33

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

34

Code Maintenance – The hidden cost of development

▪ How do you ensure code doesn’t break over time?

▪ How do you keep new features from breaking existing features?

▪ How do you maintain confidence that your code is working as expected?
M

a
in

ta
in

a
b

il
it

y
 r

a
ti

n
g

35

Upgrading to the latest MATLAB – Code Compatibility Report

▪ Tool to help upgrade code to

latest and greatest MATLAB

▪ Identifies potential

compatibility issues

▪ Hundreds of checks for

incompatibilities, errors, and

warnings

Link to documentation

for updates

Go directly to the

line of code

36

Test early, test often, test automatically

▪ Reduce risk of code breaking

▪ Catch problems early

▪ Improve code quality

▪ Document expected behaviour

Credit: http://geek-and-poke.com/

No

YesDo I care if it

actually works?
You need

testing!

Do I need

testing?

You might not

need testing

http://geek-and-poke.com/

37

▪ MATLAB Unit Testing Framework

▪ Performance Testing Framework

▪ App Testing Framework

Testing Frameworks
Test your code early and often

38

Testing Frameworks – Flexible development

▪ Script-based test

▪ Function-based test

▪ Class-based test

▪ Test integration with

Projects

39

Testing Frameworks – Easily customize and run existing tests

▪ Added buttons to make testing more

readily accessible

▪ Testing your code should be as easy as

hitting the “Run” button!

40

Testing Frameworks – App Testing Framework

▪ Verify app behavior with tests that programmatically perform gestures on a UI component

testCase.press(myApp.checkbox)

testCase.choose(myApp.discreteKnob, "Medium")

testCase.drag(myApp.continuousKnob, 10, 90)

testCase.type(myApp.editfield, myTextVar)

41

Automated Testing – Continuous Integration (CI)

▪ A system to automate the building, testing, integration, and deployment of

code as it is being developed and maintained

▪ Popular CI systems: Jenkins, Travis, CircleCI , Bamboo, and others…

▪ Benefits:

– Detect integration bugs early

– Allow you to stop bugs from being accepted

– Track and report testing history

– Flexible testing schedules and triggers

42

Automated Testing – Continuous Integration workflow

Commit Build Test Publish

A developer

makes or requests

a change to a file

(e.g. Push)

Compile MEX

Generate C Code
Report results

Report coverage

Send files to repository

Send to package manager

Notify owner of quality

prior to merge

Run tests

Triggers:

• Manual (click start)

• Periodic (e.g. nightly)

• Source control (e.g. merge request)

43

Automated Testing – Jenkins plugin

▪ Easily connect and configure

MATLAB with Jenkins

▪ Schedule automatic code

execution and testing:

– based on time of day

– whenever new code changes

are committed

44

Automated Testing – Jenkins plugin – Testing reports

▪ View testing results

▪ View code coverage

▪ View testing reports

45

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

46

Summary

▪ Good software development practices save you:

▪ MATLAB makes good software development practices easy and automated

▪ We’re adding more software development tools and features every release!

– time

– effort

– money

– frustration

– Projects

– Source control

– MATLAB Profiler

– MATLAB Code Analyzer

– Interactive programming aids

– Code Compatibility Report

– MATLAB Testing Frameworks

– And more!

47

Training (Self – paced or instructor led) / Consulting

MATLAB Programming Techniques

https://www.mathworks.com/training-schedule/training_classes/show?country_facet=AU&page=1&url=matlab-programming-techniques

