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Siemens Develops Health Monitoring System for Distribution Transformers

Results
= Retrofittable solution with non-invasive temperature sensors

= User-friendly commissioning

= Online learning for algorithm

User Story


https://uk.mathworks.com/company/user_stories/case-studies/siemens-develops-health-monitoring-system-for-distribution-transformers.html?s_tid=srchtitle_customer_stories_14_predictive%20maintenance
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Korea Institute of Energy Research Develops Al-Based Predictive
Maintenance Models for Offshore Wind Power

Results

= Development time cut in half
= 90%+ prediction accuracy achieved

= Aggressive deadline met

User Story )


https://uk.mathworks.com/company/user_stories/korea-institute-of-energy-research-develops-ai-based-predictive-maintenance-models-for-offshore-wind-power.html?s_tid=srchtitle_customer_stories_13_predictive%20maintenance

MATLAB BXPPO

Mondi Implements Statistics-Based Health Monitoring and Predictive
Maintenance for Manufacturing Processes with Machine Learning

Results

= More than 50,000 euros saved
per year

= Prototype completed in six
months

= Production software run 24/7

User Story



https://uk.mathworks.com/company/user_stories/korea-institute-of-energy-research-develops-ai-based-predictive-maintenance-models-for-offshore-wind-power.html?s_tid=srchtitle_customer_stories_13_predictive%20maintenance

MATLAB BXPPO

How best to do maintenance?

. . y achine
» Reactive — Do maintenance once there’s a manh
problem
— Problem: unexpected failures can be expensive and
potentially dangerous
. achine
- Scheduled — Do maintenance at a regular rate e

— Problem: unnecessary maintenance can be wasteful;
may not eliminate all failures

= Predictive — Forecast when problems will arise  jachine

— Problem: difficult to make accurate forecasts for health
complex equipment
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Why perform predictive maintenance?

= Prevent loss or damage of expensive
equipment

= Failures can be dangerous

= Maintenance also costly and possibly
dangerous

= Reduced downtime

= Improved operating efficiency
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What Is visual inspection?

“Automated visual inspection is the image-based inspection
of parts or equipment where a camera scans the device under
test for both failures and quality defects”

Automated Defect Detection
Computer Vision Optical Inspection

Automated Inspection
Image Processing Machine Learning
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Classical image processing
Detecting defective pills for quality control

Normal Dirty Chipped

Documentation example


https://uk.mathworks.com/help/vision/ug/detect-image-anomalies-using-explainable-one-class-classification-neural-network.html
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Classical image processing
Detecting defective pills for quality control
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' Classical Image processing
Detecting defective pills for quality control

Filled Fraction

0.95¢

0.9r

0.85F

0.8

ArealFilled Area

Normal Dirty

Anomaly Map

normDiff = sum( (double(normal) - double(dirty)).”2 , 3 );



Deep learning
Detecting defective pills for quality control

Explainable Deep One-Class Classification, Liznerski et. al (2021)
https://arxiv.org/pdf/2007.01760

Original Image

MATLAB BXPPO

Anomaly Score Heatmap
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Challenge: Poor guality input data

MATLAB BXPPO

Are conditions under which the data is gathered controlled?
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Challenge: Difficulty identifying anomalous inputs

Concrete Crack Images for Classification
DOI:10.17632/5y9wdsg2zt.2




Challenge: Automation

MATLAB BXPPO
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Challenge: Scale

MATLAB BXPPO
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Case study — Visual inspection for wind turbines
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Can we identify damaged areas on wind turbine blades?

Damaged Turbine Blade

MATLAB BXPPO
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Visual inspection of wind turbine blades
Our dataset

MATLAB BXPPO
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Problem Outline

Importing Data

Crop to Blade

Detect Damaged
Area

MATLAB BXPPO
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Importing the data

img = imread("2C8A0207.JPG");
imshow(img)

Image read

Scaling this up?

MATLAB BXPPO
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Problem Outline

Importing Data

Crop to Blade

Detect Damaged
Area

MATLAB BXPPO

21



MATLAB EXPPO

Cropping out the background

histeq

! | |
L_ bwareafilt

regionprops

im2gray
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Problem Outline

Importing Data

Crop to Blade

Detect Damaged
Area

MATLAB BXPPO
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Detecting damage

entropyfilt

prctile

MATLAB BXPO

bwconvhull
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Problem Outline

Importing Data

Crop to Blade

AN

Validation?

MATLAB BXPPO

Detect Damaged

Area
/
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Image Batch Processor

More about the image batch processor

@ 1mage Batch Processor = (m} X
PROCESS
Function Name @ Create “II D 1 @ F>
" [crop8lade [+ 5 eait ‘ Link Axes
Add =Iop Use Process  Stop Default | Export
- [ Include Image Info €3 Open | Parallel | Selected ~ Layout v
IMPORT | BATCH FUNCTION PARALLEL PROCESS LINK AXES LAYOUT | EXPORT a
test i |Z| Input Image i |5 croppedimage X
[Show All v

2C8A1549.J7PG

! 2C8A0204 2C8A0209

croppedlmage

Results

solidity

0.8050
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https://uk.mathworks.com/help/images/ref/imagebatchprocessor-app.html
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Validation

= Compute overlap between computed bounding box and ground truth

= Map detected damage convex hull back to original image co-ordinates and
compute overlap with ground truth

= This requires labeling to obtain a ground truth

27



| Image Labeler

4\ Image Labeler - LabelingProject.prj*

IMAGE LABELER

New Project ~ [ | Atgorithm:
A New Pro &n 125 I, Sublabel v I Edit + o
3 Open Project

MATLAB BXPPO

More about the image labeler

| v
[ Select Algorith liss & Keyboard Shortcuts
elect onthm ¥ i
Import | Add [, Attribute v I Delete v~ | —  ~  Autom ate | View Label | @ Tutorials + Export
E Save Project ~ - Label ~ Summary ¥
FILE LABEL DEFINITION AUTOMATE LABELING MONITOR | RESOURCES | EXPORT | a
~ ROI Label Definitions : 2C8A0204 | View Labels, Sublabels and Attributes :
k& » blade <
@
— 1 [ expandan | [ colapseai |
b damage | Be;
M@ Q)| |Label/Sub-Label

~ Scene Label Definitions

To label a scene, you must first define a scene
label.

Image Browser

~ Object Labels
blade

damage
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https://uk.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html

Problem Outline

Read Data

MATLAB BXPPO

Can we do better using

Crop to Blade

/

deep learning?

Detect Damaged
Area

29
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Deep learning workflow

ACCESS AND EXPLORE LABEL AND PREPROCESS DEVELOP AND VALIDATE
DEPLOY
DATA DATA MODEL

Neural Network = Model

= Designing the architecture S KA

AR
NN

= Training and validating the model

= Tuning training options

30
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Transfer learning

Replace final layers Train network

Load pretrained network

New layers to learn
features specific
to your data

—

Early layers that learned Last layers that Training images

low-level features learned task
(edges, blobs, colors)  specific features

—o

1 millionimages
1000s classes

Training options

o

100s images
10s classes

Fewer classes
Learn faster

Predict and assess
network accuracy

Testimages

Trained Network

31



Solving the cropping sub-problem
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| Architecture

Anomaly Detection

Deep Autoencoder
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| Architecture

Image Segmentation

Semantic Segmentation Network

Deep Autoencoder

Convolutional Neural Networks
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| Architecture

Denoising, Synthetic data generation

Generative Adversarial Network (GAN)
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| .
Architecture
Object Detection

YOLO - You Only Look Once

Backbone

I

Convolutional Neural Networks

Input Image

Deep Autoencoder

mmmmmmmmm

Detection

Head

Semantic Segmentation Network

Generative Adversarial Network (GAN)

MATLAB BXPPO
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Solving the cropping sub-problem
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Architecture

Data
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4001

Train & Evaluate

MATLAB BXPPO
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Importing the data

img = imread("2C8A0207.JPG");
imshow(img)

Image read

Scaling this up?

MATLAB BXPPO
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Importing the data and data augmentation

Datastore

ElnEEn

2C8A0200.JPG 2C8A0201.JPG 2C8A0202.JPG

‘."--1|||lll” L

V - ] = ° °
S — Hard Drive

2C8A0218.JPG 2C8A0219.JPG 2C8A0220.JPG

data = trainDS.read();

i i l“
4
f = figure();
img = imread("2CBA82687.IPG");
imshow(img)
i | i

Image read

Datastores

40



Data Augmentation

imresize

~ blade

jitterColorHSV

padarray

MATLAB EXPPO

hilada

randomAffine2d
+ imwarp
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Solving the cropping sub-problem
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Training and evaluation

43 | detector = yolov4ObjectDetector("tiny-yolov4-coco”,"blade",anchorBoxes, InputSize=inputSize);
44 options = trainingOptions("adam", ...

45 InitialLearnRate=0.001, ...

46 MiniBatchSize=4,...

47 MaxEpochs=2@0, ...

48 Shuffle="every-epoch",

49 ValidationData=valDS);

50 detectorTrain = trainYOLOv4ObjectDetector(preprocessedTrainDS,detector,options);

Computing Input Normalization Statistics.

3k 3k 3K 3k 3k ok 3k 3k 3k 3k 3k 3k %K 3k 3k 3k 5k 3k 3k 3K 3k 3k 3k 3R 3K 3k 3k 3k 3k 3K 3k 3k 3k sk 3K ok ok Kk ok ki k sk kR sk kR R ok kokok sk k sk kR R skokokokok kk sk sk Rk ok okok

Training a YOLO v4 Object Detector for the following object classes:

* blade
Epoch Iteration TimeElapsed LearnRate TraininglLoss ValidationLoss

1 1 00:00:11 0.001 2407.7 2746

1 10 00:00:44 0.001 504.49 432.31
1 20 00:01:18 0.001 144.33 138.46
2 30 00:01:52 0.001 76.456 75.908
2 40 00:02:27 0.001 48.541 51.499
3 50 00:02:59 0.001 39.563 40.005
3 32 0.001 32.804 33.864

00:03:

MATLAB BXPPO
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Training and evaluation

Loss
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Take-Home Messages

MATLAB BXPPO
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Control your data gathering environment

Importing Data Crop to Blade

Detect Damaged
Area

46



Classical image processing and deep learning can be complementary

Data Requirements

Data Labelling

Algorithm Development

Anomalies

Explainability

Execution Speed

Classical Image Processing ‘

Low

Not required

Potentially complex

Must account for manually
Likely to be missed once deployed

Complete

High

Deep Learning

High

Algorithm / workflow dependent

Time consuming
Learnt from data

Learnt from data
Depends on algorithm

Low by default
Tools exist to improve

Slow
Specialized hardware can improve

MATLAB BXPPO
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Onramps - Learn the basics in 2 hours or less

Image Processing Onramp

2 hours | Languages

Learn the basics of practical image processing techniques in MATLAB.

Computer Vision Onramp

1.5hours | Languages

Learn the basics of computer vision to design an object detector and tracker.

Machine Learning Onramp

2 hours | Languages

Learn the basics of practical machine learning methods for classification problems.

Deep Learning Onramp

2 hours | Languages

Get started quickly using deep learning methods to perform image recognition.

48



MATLAB BXPPO

1
3
3
82

3

0 0.5 1 -0.5 0 0.5
Silhouette Value Silhouette Value

2

! 3
& 2 4]

@3 w4
E E
(@] Q

4 5

-0.5 0 0.5 1 -0.5 0 0.5
Silhouette Value Silhouette Value

Model 1.1 (Fine
000
001 1
010 1
@ 011 2 1 102
©
&)
@
S
= 100

Training Course: Predictive Maintenance with MATLAB

Topics included in this 2-day course: {
= Importing and organizing data s

= Creating custom visualizations

= Fault Detection/Classification

= Preprocessing to improve data quality, and
extract time and frequency domain features

= Estimating Remaining Useful Life (RUL)

= Interactive workflows with apps

111111

See detailed course outline

49


https://www.mathworks.com/training-schedule/predictive-maintenance-with-matlab

Achieve Results Faster with Predictive Maintenance Consulting

Our expert consultants can help you with the entire predictive maintenance workflow:
Data Preprocessing, Exploratory Analysis, Predictive Modeling, and Operational Deployment

dﬂ aa €A

Transparent Customized Return on
Approach Engagements Investment
You will have full access to all We’ll work with you on a Reduce development time and
our work throughout your project. customized project plan cost, learn faster, and improve
Your self-sufficiency is our goal. aligned to your business goals. guality and collaboration.

Request a free consultation: www.mathworks.com/pmp 50
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