
1© 2015 The MathWorks, Inc.

Real-Time Testing in a Modern,

Agile Development Workflow

Simon Eriksson – Application Engineer

2

Demo – Going from Desktop Testing to Real-Time Testing

3

Key Take-Aways From This Presentation

▪ Agile = iterative and short design cycles, high degree of re-use

of digital assets is essential

▪ Technology landscape demands faster control loops, prototyping

with SW is not enough anymore

4

Overview on Real-Time Testing

▪ Rapid Control Prototyping

▪ Run your algorithm against real HW without any manual coding

▪ Tune your algorithm live directly from Simulink

5

Overview on Real-Time Testing

▪ Hardware-In-the-Loop (HIL)

▪ Test your controls against a virtual plant model

▪ Test with real I/O, without breaking anything!

Controller(s)HIL simulatorDevelopment computer

6

Real-Time Simulation and Testing
Simulink Real-Time for RCP and HIL

Software-in-the-Loop

Simulation

Processor-in-the-Loop

Hardware-in-the-Loop

Production Code Generation

System Requirements

Software

Integration

Hardware/Software

Integration

System Integration

& Calibration

System Design

Software Design

On-Target Rapid Prototyping

Coding

Rapid Control Prototyping

7

Agile and Real-Time Testing

▪ Rapid Control Prototyping

▪ Get ideas in front of stakeholders

Changes in SW

Changes in HW

Deployable prototypes

▪ HIL

▪ CI to include HIL as well

New/changing requirements

“back-to-back” MIL, SIL, PIL and HIL testing

Controller(s)HIL simulatorDevelopment computer

8

How To Stay Fast/Effective i.e. Agile?

Agile = iterative and with “short” design cycles

http://www.yodiz.com/

http://modernagile.org/

http://alphatechglobal.com/

http://www.yodiz.com/blog/wp-content/uploads/2016/01/Scrum_process.svg_.png
http://modernagile.org/img/modernAgileWheel/modern_agile_wheel_english.svg
http://alphatechglobal.com/images/agile.png

9

How To Stay Fast/Effective i.e. Agile?

▪ MBD  Re-use of digital assets!

▪ Digital Assets :

▪ Models

▪ Test Vectors

▪ Field Data

▪ Requirements

▪ Legacy code

▪ …

Design

with

Simulation

Executable

Specifications

Continuous

Test and

Verification

Automatic

Code Generation

Models

11

Rapid Controls Prototyping

12

Rapid Controls Prototyping - Challenges and Solutions
“Push button” workflow for both SW and HW

▪ Challenges

– Faster control loops. Before kHz range now MHz

– Many teams/competencies (SW and HW) required

▪ Solutions

– Improved HDL code generation allows for prototyping on FPGA

– Integration with Simulink Real-Time enables connectivity to wide

range of I/O combined with FPGAs without manual coding

13

Rapid Controls Prototyping

On HW

14

Create FPGA I/O and Algorithmic Subsystems
Accelerate parts of your Simulink model using automated HDL code generation

▪ Achieve closed-loop sample rates up to several MHz

▪ Quick reconfiguration of FPGA I/O promotes a flexible real-time testing environment and

very fast design iterations

Requirements:

HDL Coder, Vivado Studio

15

Usage:
- High data throughput between FPGA and x86 CPU

- Low latency link between FPGA and x86 CPU

Simulink Programmable FPGA I/O modules
CPU to FPGA communication – DMA

16

Use Cases:
- Direct Streaming

- High Speed Data logging (FPGA to CPU)

- Data playback (CPU to FPGA)

- Onboard RAM

- Failure debugging with Ring Buffer

- Co-processor modes

- Interrupt based

- Polling mode based

Simulink Programmable FPGA I/O modules
CPU to FPGA communication – DMA

17

FPGA-based I/O Modules
Multiple Interconnected FPGA-based I/O Modules

▪ Closed-loop rates of 500 kHz and faster

▪ > 100 analog and digital I/O lines

▪ Low latency FPGA interconnects (SPI and Aurora protocols)

▪ Algorithmic execution over multiple FPGAs

Electric motors (HIL)

Solar inverters for MW grids

100kW DC-DC converter

18

Native Floating-Point

19

Native floating-point support in HDL Coder for Real-Time Testing

Ok cool, but what does this mean for me?

▪ Rapid Control Prototyping

– Less effort going to FPGA.  i.e. more people can do it and be faster too!

– Create golden reference.  “this is how good it can be”, prove design decisions.

▪ HIL Testing

– Easier to take models of physical systems, which by nature can be numerically

sensitive, to run on FPGA  Less risk and time spent creating plant models for real-time

20

Before : Floating- Point Design Needed to be

Converted to Fixed-Point to Generate HDL Code

21

Sometimes you need to start and stay in floating point to …

▪ Implement algorithms with large or unknown dynamic ranges (i.e.

integrators in feedback loops)

▪ Implement operations that are difficult to design in fixed-point (i.e. atan2)

Requires extra

integrator saturation to

guarantee mathematics

will not overflow

22

Native floating-point support in HDL Coder

• Vendor-independent RTL for FPGA and/or ASIC design

• Full range of IEEE-754 features

• Optional support for Denormals, INF, NAN, Rounding, …

• Extensive Math and Trigonometry Block support

Native single-precision

support for over 130

Simulink blocks

Operators

Add, Subtract

Mul, Gain, Abs

Min, Max, Relops

Divide, Mod, Rem

Reciprocal, Sin, Cos

Atan, Atan2

Log, Exp, Power

Sqrt & Inverse Sqrt

Data type conversions

23

Hardware-In-the-Loop

24

Hardware-In-the-Loop and it’s Agile Benefits

▪ HIL enables more efficient/agile testing by

– Being Repeatable

– Being Scalable

– “Failing” without breaking anything

– Automation

25

HIL - Challenges and Solutions
Automation and re-use going from testing on desktop and in real-time

▪ Challenges

– Sharing test data (test vectors, test results)

– HW installations can become large or a highly booked

resource

– Numerical sensitivity when creating plant models

▪ Solutions

– Integrated desktop and real-time testing framework

– New high performance formfactors allow for “desktop HIL”

– Support for native floating-point allow to stay in single

precision when running on FPGA

26

▪ Intel Core i7 4.2 GHz quad core, or two Xeon CPUs with 20 cores

▪ Over 100 I/O modules installable leveraging additional expansion chassis

▪ Challanges :

– Usually located in large labs, that require timeslots to be booked etc.

– Not very mobile for use outside the lab

HIL Systems
Typical HW setups

27

▪ Solution

– Ideal for mobile use/“desktop HIL” of for Rapid Control Prototyping

– Intel Core i7 2.5 GHz dual core CPU and FPGAs

– Stackable: Up to 14 I/O modules supported

– Multi-node HIL-Simulator for automated testing of large scale plants

(e.g. 64 Profibus / 32 Profinet / Analog I/O / Digital I/O)

Performance real-time target machine:

Hardware-in-the-Loop: Rack example
“Desktop HIL”
Power in a Small Form Factor

28

Product Development Process

Software-in-the-Loop

Simulation

Processor-in-the-Loop

Hardware-in-the-Loop

Production Code Generation

System Requirements

Software

Integration

Hardware/Software

Integration

System Integration

& Calibration

System Design

Software Design

On-Target Rapid Prototyping

Coding

Rapid Control Prototyping

Simulink Test

Simulink Real-Time

29

Fully Tested Algorithm in Simulink Test

Test Manager

30

Fully Tested Algorithm in Simulink Test

Test Manager

31

Automated Testing with Simulink Test
Real-Time Test Automation, ideal for Hardware-in-the-Loop

, , …

▪ Integrates with MATLAB Unit Test

▪ Supports the TAP protocol to run from CI systems like Jenkins, VSTS, etc.

32

Demo!

33

Key Take-Aways From This Presentation

▪ Agile = iterative and short design cycles, high degree of re-use

of digital assets is essential

▪ Technology landscape demands faster control loops, prototyping

with SW is not enough anymore

34

Questions?

35

Thank You!

