MATLAB EXPO 2018

Managing Performance and Safety in Multi-Domain Complex Systems

Juan Sagarduy

1. System design (integration, optimization)

1. System design (integration, optimization)

2. Development of control algorithms

1. System design (integration, optimization)

2. Development of control algorithms

3. Hardware-based physical emulation (real-time testing)

1. System Design

Explore – Integrate – Optimize

Active Safety – System Design

Step 1. Model configuration (no supervisory logic) to understand physical behaviour and add controllability

* models available upon request

Active Safety – System Design

•

- Refine requirements
- Set-up test scenarios
- Report & align with others

scenario_script.m* × +	
8	
9 -	□ for k=1:3
10 -	<pre>md_refrig = 1+(k-1)*0.5;</pre>
11 -	<pre>sim('active_safety_thermal_PID_tuning.slx');</pre>
12 -	<pre>tid=ScopeThermal.time;</pre>
13 -	<pre>theta=ScopeThermal.signals(2).values(:,1);</pre>
14 -	<pre>current=ScopeThermal.signals(1).values(:,1);</pre>
15	
16 -	<pre>figure(1);</pre>
17 -	h=figure(1);
18 -	h.WindowStyle = 'docked';
19	
20 -	<pre>subplot(1,2,1);</pre>
21 -	<pre>plot(tid,theta,'LineWidth',2);</pre>
22 -	grid on; hold on;
23 -	<pre>xlabel('time[sec]');</pre>
24 -	<pre>ylabel('Temperature Battery[K]');</pre>
25 -	<pre>legend('1.0kg/s','1.5kg/s','2.0kg/s','Location','NorthEast');</pre>

Active Safety >> System Design -> Battery Cooling

Active Safety >> System Design -> Vehicle Dynamics

2. Algorithm Development

Regulate – Tune – Supervise

Active Safety – Algorithm Development

Structure and threshold values are critical to supervisory logic design. Physical state of all components is decisive.

Active Safety – Algorithm Development > Supervisory Logic

Structure and threshold values are critical to supervisory logic design. Physical state of all components is decisive.

📣 MathWorks[.]

Active Safety – Algorithm Development -> braking

What is the trade-off between hydraulic and regenerative braking?

Brake logic

S PS

Band Brake

S1

Active Safety - Prognosis > fault/degradation signature(s)

A MathWorks[®]

Active Safety - Prognosis > fault/degradation signature(s)

Active Safety - Prognosis > Sensitivity & Calibration

MonteCarlo simulations (Sensitivity Analysis with Parallel Computing) How is the signature quantity i.e. current affected by deviations/uncertainties In physical/control properties?

3. Testing

Verify your solution in real-time

Active Safety - Real-time Testing

Prepare model for real-time testing

- a. golden reference >> controller (fixed-step) + Plant (variable-step)
- b. controller + Plant (fixed-step solver)
- c. optimal solution >> robustness vs. speed
- d. test on hardware (Speedgoat)

Conclusions

MATLAB/Simulink offers a unique environment for data analytics & embedded development

MATLAB

SIMULINK

Partnership with MathWorks reduces risk and accelerates the adoption process

