
1© 2015 The MathWorks, Inc.

Automating Best Practices to

Improve Design Quality

Magnus Jung, MathWorks

2

Growing Complexity of Embedded Systems

Engine Management

Transmission Control

Forward Camera

Electric Power Steering

Smart Junction Box

Smart Junction Box

Battery Management

Propulsion Motor Control

DC/DC Converter

Stability Control

Infotainment

HVAC Control

Navigation

Instrument Panel

Vehicle-to-Vehicle

Vehicle-to-

Infrastructure

Short-Range Radar

Ultrasonic Sensor

Long-Range Radar

Stability Control

Airbag
Emergency Braking

Automatic Parking

Adaptive Cruise Control

All-Wheel Drive

Active Damping

4-Wheel Steer

Back-up Camera

Body Control Module

Tire Pressure Monitor

Voice Recognition

Adaptive Front

Lighting

Power Window

Power Seat

Keyless Entry

Power Liftgate

E-Call

2000 2015Lines of Code

Siemens, “Ford Motor Company Case Study,” Siemens PLM Software, 2014

McKendrick, J. “Cars become ‘datacenters on wheels’, carmakers become software companies,” ZDJNet, 2013

2-3M

6 M

16 M

http://www.plm.automation.siemens.com/en_us/about_us/success/case_study.cfm?Component=63184&ComponentTemplate=1481
http://www.zdnet.com/article/cars-become-datacenters-on-wheels-car-makers-become-software-companies/

3

Key Topics

How to:

▪ Handle project complexity

▪ Enable early detection of defects

▪ Automate verification activities

▪ Ensure conformance to safety standards

High Level

Design

Detailed

Design

Coding

Integration

Testing

Unit

Testing

Verified & Validated

System
System

Requirements

“Reduce costs and project risk through early

verification, shorten time to market on a certified

system, and deliver high-quality production code

that was first-time right” Michael Schwarz, ITK

Engineering

4

Requirements

Development Process

Specification C/C++

Hand code

5

Development Process with Model Based Design

Code

Generation

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

6

Poor Requirements Management

Sources: Christopher Lindquist, Fixing the Requirements Mess, CIO Magazine, Nov 2005

Why do 71% of Embedded Projects Fail?

7

Gap Between Requirements and Design

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

8

Challenges with Requirements

Where are

requirements

implemented?

How are

they tested?

Is design and

requirements

consistent?

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

9

Track Implementation and Verification

10

Working with Requirements

View

Track Manage

11

Import

Import Requirements from External Sources

IBM Rational DOORS

Simulink Requirements EditorMicrosoft Word

12

Link Requirements, Designs and Tests

Verified

By

Test Case

x

REQ 3.1 ENABLING CRUISE CONTROL

Cruise control is enabled

when …..

ENABLE SWITCH DETECTION

If the Enable switch is

pressed ……

Implemented

By

Derives

13

Requirements Perspective

14

Track Implementation and Verification

Passed

Failed

No Result

Missing

Verification Status

Implemented

Justified

Implementation Status

Missing

15

Respond to Change

If the switch is pressed and the counter reaches 50
then it shall be recognized as a long press of the switch.

If the switch is pressed and the counter reaches 75
then it shall be recognized as a long press of the switch.

Implements
Original Requirement

Updated Requirement

16

Design Review for Complex Designs

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Review and

static analysis

17

Verify Design to Guidelines and Standards

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Designed to

best practices?

Component

Size and

Complexity?

Optimized

for Code

Generation?

18

Verify Design to Guidelines and Standards

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Typically:

• Too Late

• Impossible to review consistently

• Heavy manual work

19

Automate verification with static analysis

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Check for:

• Readability and Semantics

• Performance and Efficiency

• Clones

• …
Model Advisor Analysis

20

Generate reports for reviews and documentation

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Model Advisor Analysis Model Advisor Reports

21

Built in checks for industry standards and guidelines

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

• DO-178/DO-331

• ISO 26262

• IEC 61508

• IEC 62304

• EN 50128

• MISRA C:2012

• CERT C, CWE, ISO/IEC TS 17961

• MAAB (MathWorks Automotive Advisory Board)

• JMAAB (Japan MATLAB Automotive Advisory Board)

22

Custom checks for Your Best Practices and Guidlines

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

23

Static

Analysis

Checks for standards and guidelines are often performed late

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Rework

24

Static

Analysis

Edit-Time

Checking

Shift Verification Earlier With Edit-Time Checking

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

• Highlight violations as you edit

• Fix issues earlier

• Avoid rework

25

Find Compliance Issues as you Edit with Edit-Time Checking

26

Assess Quality with Metrics Dashboard

• Consolidated view of

metrics

• Size

• Compliance

• Complexity

• Identify where problem

areas may be

27

Grid Visualization for Metrics

▪ Visualize Standards

Check Compliance

– Find Issues

– Identify patterns

– See hot spots

Red: Fail

Orange: Warning

Green: Pass

Gray: Not run

Legend:

28

Systematic Functional Testing

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Does the

design meet

requirements?

Is it functioning

correctly?

Is it

completely

tested?

29

Test Case

Main Model

Systematic Functional Testing

AssessmentsInputs

Test Sequence

Signal Builder

MAT file (input) MAT file (baseline)

Test Assessment

MATLAB Unit Test
Test Harness

Excel file
Excel file

30

Manage Testing and Test Results

31

Assess Test Completness

Measure Structural Coverage

- Condition

- Decision

- MCDC

- …

32

Assess Test Completness – Coverage Analysis

Simulink
• Identify testing gaps

• Missing requirements

• Unintended Functionality
Stateflow

Generated Code

33

Continuous Automated Feedback

Requirements
Executable

Specification

Model used for

production code

generation
C/C++

Generated code

Continuous Integration

Static

Checks
Static

Checks

Static

Checks
Static

Checks

34

C/C++
Requirements

Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Is the code

compliant

to MISRA?

Is integrated

code free of

run-time

errors?

Other code

Is interface between

generated and other

code fully tested?

The Generated Code is integrated

with Other Code (Handwritten)

35

Static Code Analysis with Polyspace

▪ Code metrics and standards

– Comment density, cyclomatic complexity,…

– MISRA and Cybersecurity standards

– Support for DO-178, ISO 26262, ….

▪ Bug finding and code proving

– Check data and control flow of software

– Detect bugs and security vulnerabilities

– Prove absence of runtime errors

Results from Polyspace Code Prover

36

Equivalence Testing

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Is the code

functionally

equivalent to

model?

Is all the

code tested?

37

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

▪ Re-use tests developed for model to test code

▪ Collect code coverage

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Target

Board

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

Desktop

Computer

PIL

SIL

38

Qualify tools with IEC Certification Kit and DO Qualification Kit

▪ Qualify code generation and verification products

▪ Includes documentation, test cases and procedures

BAE Systems Delivers DO-178B Level A Flight

Software on Schedule with Model-Based Design

KOSTAL Asia R&D Center Receives ISO 26262

ASIL D Certification for Automotive Software

Developed with Model-Based Design

39

Summary

▪ Handle project complexity

▪ Enable early detection of defects

▪ Automate verification activities

▪ Ensure conformance to safety standards

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Component

and system

testing

Equivalence

testing

Equivalence

checking

Review and

static analysis

40

Thank You!

