MATLAB EXPO 2019

Predictive Maintenance with MATLAB – Master Class

Antti Löytynoja, Senior Application Engineer

What is Predictive Maintenance?

MATLAB EXPO 2019

Translate

Translate

A Predictive Maintenance Algorithm Answers These Questions

I need help.

One of my cylinders is blocked.

I will shut down your line in 15 hours.

Predictive Maintenance Toolbox for Developing Algorithms

Predictive Maintenance Toolbox[™] lets you label data, design condition indicators, and estimate the remaining useful life (RUL) of a machine.

The toolbox provides functions and an interactive app for exploring, extracting, and ranking features using data-based and model-based techniques, including statistical, spectral, and time-series analysis. You can monitor the health of rotating machines such as bearings and gearboxes by extracting features from vibration data using frequency and time-frequency methods. To estimate a machine's time to failure, you can use survival, similarity, and trend-based models to predict the RUL.

You can analyze and label sensor data imported from local files, cloud storage, and distributed file systems. You can also label simulated failure data generated from Simulink[®] models. The toolbox includes reference examples for motors, gearboxes, batteries, and other machines that can be reused for developing custom predictive maintenance and condition monitoring algorithms.

MATLAB EXPO 2019

How are MathWorks Tools Used for Predictive Maintenance?

Transocean Inc.

MATLAB EXPO 2019

Transocear

Link to user story

Link to user story

Workflow for Developing a Predictive Maintenance Algorithm

Why MATLAB & Simulink for Predictive Maintenance

- Reduce the amount of data you need to store and transmit
- Explore approaches to predictive modeling
- Deliver the results of your analytics based on your audience
- Get started quickly...especially if you are an engineer

Why MATLAB & Simulink for Predictive Maintenance

- Reduce the amount of data you need to store and transmit
- Explore approaches to predictive modeling
- Deliver the results of your analytics based on your audience
- Get started quickly...especially if you are an engineer

MATLAB EXPO 2019

Challenges: How do you make sense of the ALL the data being collected?

- 1 day ~ 1.3 GB
- 20 sensors/pump ~26 GB/day
- 3 pumps ~ 78 GB/day
- Satellite transmission
 - Speeds approx. 128-150 kbps,
 - Cost \$1,000/ 10GB of data
- Needle in a haystack problem
 MATLAB EXPO 2019

Pump flow sensor 1 sec ~ 1000 samples ~16kB

Solution: Feature Extraction

Reduce the amount of data you need to store and transmit

- How do you extract features?
 - Signal processing methods
 - Statistics & model-based methods
- Which features should you extract?
 - Depends on the application, data, and hardware
 - Requires domain-knowledge
- How do I deal with streaming data?
 - Determine buffer size
 - Extract features over a moving buffer window

qMean	qVar	qSkewness	qKurtosis			
38.4945	9.2306	-0.5728	2.4662			
qPeak2P…	qCrest	qRMS	qMAD			
15.2351	1.1553	38.6141	2.5562			

Diagnostic Feature Designer App

Predictive Maintenance Toolbox R2019a

- Extract, visualize, and rank features from sensor data
- Use both statistical and dynamic modeling methods
- Work with out-of-memory data
- Explore and discover techniques without writing MATLAB code

Demo: Extracting features from a signal

- Scenario: we want to monitor the condition of industrial pumps.
- Data: pressure/flow data collected from industrial pumps with different failures, 240 logs in total
- Goal: transform the sensor data into descriptive features that help us distinguish better the different failures and reduce the amount of data

Daimler are Using MATLAB Today for Anomaly Detection

Data reduction of time series by a factor of **250x without a significant loss of information** MATLAB EXPO 2019

When is Your Data Most Valuable?

Near real-time decisions

Demo: generating code for embedded systems

- Scenario: We have designed a feature extraction algorithm in MATLAB
- Goal: To implement the algorithm on an embedded system, for near-realtime processing, and to reduce the amount of data to be sent to cloud

MATLAB EXPO 2019

Fault Classification Algorithms Allow You to Identify the Root Cause of Anomalous Behavior

- Condition monitoring to detect:
 - Seal leak
 - Inlet blockage
 - Bearing degradation

Fault Classification Algorithms Allow You to Identify the Root Cause of Anomalous Behavior

- Condition monitoring to detect:
 - Seal leak
 - Inlet blockage
 - Bearing degradation
- Identify fault present in system using only pressure and flow sensor data

Challenges: not enough data (or the right kind of data)!

- You may have not experienced all potential failures in the equipment, or it's too costly to run real pumps into failure
- Solution: Build a digital twin of the physical machine in Simulink/Simscape, and model the failures
 - Simscape has blocks to model and simulate multi-domain physical systems (electrical/hydraulical/mechanical)

Model Component Failure

- Generic faults in many components
 - Short circuit, open circuit, friction, fade, etc.
 - Trigger based on time or conditions
- Adjust parameter values
 - Worn bearing adds friction
 - Blocked inlet has reduced passage area
- Adjust network
 - Seal leakage adds flow path
- Custom effects in Simulink
 - Broken winding applies no torque for 1/3 of every revolution

Demo: Generating failure data with a digital twin

- Scenario: We've already built and tuned our digital twin
- Goal: Generate synthetic failure data by running multiple simulations with varying levels of degradation/failure

Why MATLAB & Simulink for Predictive Maintenance

- Reduce the amount of data you need to store and transmit
- Explore approaches to predictive modeling
- Deliver the results of your analytics based on your audience
- Get started quickly...especially if you are an engineer

Demo: Create a Machine Learning Model for Condition Monitoring

- Scenario: We have simulated data from all the failures (blockage, leakage, friction) and all of the possible combinations of these failures
- Goal: Create a classifier to identify the fault

📣 Classification Learner for Predictive Main	ntenance - Confusion Matr	ix												- 0
CLASSIFICATION LEARNER VI	EW												H.	
New Feature PCA Boosted	Bagged Subspace	Subspace Advanced	Use	Frain Scatte	er Confusio	ROC Curv	ve Para	allel I	Export Plot	Generate	Export			
Session V Selection	Irees Discriminant	KNN	Parallel	Plot	Matrix	PLOTS	Coordina	ites Plot	to Figure	Function	Model 🕶			
Data Browser		Scatter Plot × Co	onfusion Mat	ix X		PEOTS				CAPORT		_	_	
▼ History														
Last change: Coarse KNN	22/22 features A						Mode	1.21						Plot
1.17 🟠 KNN Last change: Cosine KNN	Accuracy: 19.6% 22/22 features		0 98%		2%]	98%	2%	Number of observations
1.18 🟠 KNN Last change: Cubic KNN	Accuracy: 19.2% 22/22 features													True Positive Rates False Negative Rates
1.19 🏠 KNN Last change: Weighted KNN	Accuracy: 20.8% 22/22 features		1	89%		11%						89%	11%	Positive Predictive Values
1.20 🟠 Ensemble Last change: Boosted Trees	Accuracy: 75.4% 22/22 features		10 15%		80%				5%			80%	20%	False Discovery Rates
1.21 🏠 Ensemble Last change: Bagged Trees	Accuracy: 78.3% 22/22 features													What is the confusion matrix?
1.22 🟠 Ensemble Last change: Subspace Discriminant	Accuracy: 72.9% 22/22 features	e class	11	41%	6%	29%			6%	18%		29%	71%	
1.23 🟠 Ensemble Last change: Subspace KNN	Accuracy: 65.4% 22/22 features	-L	100	3%			93%		5%			93%	7%	
1.24 ☆ Ensemble Last change: RUSBoosted Trees	Accuracy: 74.2% 22/22 features		101	4%				71%	4%	21%		71%	29%	
▼ Current Model									_					
Model 1.21: Trained	^		110		6%	6%	13%		75%			75%	25%	
Results Accuracy 78.3% Prediction speed ~460 obs/sec Training time 18.284 sec			111	12%		24%		24%		41%		41%	59%	
Model Type Preset: Bagged Trees	~		0	7	70	77	700 Predicte	707 ed class	770	777				
Data set: FeatureTable1 Observatio	ns: 240 Size: 49 kB	Predictors: 22 Respon	se: faultCod	e Respon	se Classes:	3				Va	lidation:	5-fold	Cross-Va	/alidation

Estimate Remaining Useful (RUL) to Determine When You Should Perform Maintenance

abele "energing to the part of the part of the state of the Analysis of the part of the state of the state of the state of the burdle of the state of the state of the state

RUL: 459 hours (95%CI: 374-558 hours)

Why MATLAB & Simulink for Predictive Maintenance

- Reduce the amount of data you need to store and transmit
- Explore approaches to predictive modeling
- Deliver the results of your analytics based on your audience
- Get started quickly...especially if you are an engineer

Challenges: Delivering results to your end users

- Maintenance needs simple, quick information
 - Hand held devices, Alarms
- Operations needs a birds-eye view
 - Integration with IT & OT systems
- Customers expect easy to digest information
 - Automated reports

MATLAB EXPO 2019

Dashboards

Fleet & Inventory Analysis

Predictive Maintenance Architecture on Azure

Predictive Maintenance Architecture on Azure

Bosch and SNCF Have Implemented Production Systems Running Today

Link to user story

INDICATOR ANALYSIS (TIME AND DISTRIBUTION) **CBM Server** Time Time analysis : Abnormal 4 how evolve an indicator behavior during time average Optimum Distribution analysis : how indicator values are distributed among rolling average 7 stock fleet Abnormal Optimum behavior indicators value IKOS SNCF TÉLÉDIAG ST PIERRE DES CORPS TUESDAY, JUNE 19, 2018

CBM – PROGNOSTIC

Link to user story

MathWorks[®]

"Updating software is required only at 1 location...Maximum of 1 hour downtime for major updates..."

"...[Our solution] optimizes the whole maintenance process without breaking the existing process..."

MATLAB EXPO 2019

Why MATLAB & Simulink for Predictive Maintenance

- Reduce the amount of data you need to store and transmit
- Explore approaches to predictive modeling
- Deliver the results of your analytics based on your audience
- Get started quickly...especially if you are an engineer

MathWorks can help you get started TODAY

- Examples
- Documentation
- Tutorials & Workshops
- Consulting
- Tech Talk Series

MATLAB EXPO 2019

Why MATLAB & Simulink for Predictive Maintenance

- Reduce the amount of data you need to store and transmit
- Explore approaches to predictive modeling
- Deliver the results of your analytics based on your audience
- Get started quickly...especially if you are an engineer

