MATLAB EXPO 2019

Design Efficient DC-to-DC Power Converters

Juan Sagarduy – Fredrik Håbring

Power Electronic Systems

Power Electronics Applications

Electric vehicles and charging stations

Renewable energy MATLAB EXPO 2019

Rail

Lighting

- Extensive library of sources and loads
 - PV arrays, Batteries, Motors, Power Converters

- Extensive library of sources and loads
 - PV arrays, Batteries, Motors, Power Converters
- Broad range of power electronics models (fidelity)
 - Average value >> fast ideal switching >> physics-based

- Extensive library of sources and loads
 - PV arrays, Batteries, Motors, Power Converters
- Broad range of power electronics models
 - Average value, fast ideal switching, physics-based
- Advanced control design capabilities
 - Auto-tuning in time & frequency domains for single and multiple loops

- Extensive library of sources and loads
 - PV arrays, Batteries, Motors, Power Converters
- Broad range of power electronics models
 - Average value, fast ideal switching, physics-based
- Advanced control design capabilities
 - Auto-tuning in time & frequency domains for single and multiple loops
- Generation of readable, compact and fast code from models
 - C for microprocessors, HDL for FPGAs

- Extensive library of sources and loads
 - PV arrays, Batteries, Motors, Power Converters
- Broad range of power electronics models
 - Average value, fast ideal switching, physics-based
- Advanced control design capabilities
 - Auto-tuning in time & frequency domains for single and multiple loops
- Generation of readable, compact and fast code from models
 - C for microprocessors, HDL for FPGAs

Customers routinely report 50% faster time to market

Murata Used Simulink to Model the EMS Controller and Power Electronics, Run simulations, and Generate Production Code

Challenge

Reduce time-to-market for the company's first energy management system product trial

Solution

Use Model-Based Design with Simulink to model the controller and power electronics, run simulations, and generate production code implemented on Piccolo[™] and Delfino[™] 32-bit microcontrollers made by TI

Results

- Control software development time reduced by more than 50%
- Defect-free code generated
- Project ramp-up time shortened

Murata flexible three-phase energy management system with lithium-ion battery.

Model-Based Design with Simulink enabled us to reduce time-to-market, which was a significant advantage for us. Because we were not expert programmers, modeling and simulating our control design and then generating quality C code from our models was essential to produce a working system as quickly as possible."

- Dr. Yue Ma, Murata Manufacturing Co., Ltd.

Challenges for Power Electronics Engineer

- A. Easy access to physical insights (source/load, thermal cooling, peak voltages/currents...)
- B. Systematic testing of embedded software (operating range, fault scenarios...)
- C. Early detection of errors in software development
- D. Increasing demands with Electrification (regulation, industry standards on safety, power quality)

Our Project Today

DC/DC LED Developer's Kit

Fig 1: TMDSDCDCLEDKIT

MATLAB EXPO 2019

LED Head Lamp

Fig4: DC/DC LED Lighting Board Block diagram with F28035

Power Converter Design Workflow.

Let's get started!

Power Converter - Design Workflow Tasks

1. Component sizing (inductor, capacitor) & Design Exploration

- 2. Determine thermo-electric behaviour of the converter (calibration)
- **3.** Design control algorithm >> time/frequency domain specifications
- 4. Implement power electronic controls on an embedded processor

Design Exploration – Impact of inductor

A MathWorks[®]

Design Exploration – Impact of Inductor (results v-i)

MATLAB EXPO 2019

Design Exploration – Synergy between MATLAB & Simulink

Parameter sweep

- MATLAB scripting
- parsim (parallelization)

Sensitivity analysis (Montecarlo)

- optimization algorithms
- statistical distribution(s)
- parallel computing

Recap: Component Sizing & Design Exploration

What we did:

- Use simulation to design DC to DC converters
- Optimize component sizing using simulation driven analysis

Power Converter Control Design Workflow Tasks

1. Component sizing (inductor, capacitor) & Design exploration

2. Determine thermo-electric behaviour of the converter (calibration)

- 3. Design control algorithm based on time/frequency domain specification
- 4. Implement power electronic controls on an embedded processor

Determine Thermal behaviour – Multi-domain (Simscape)

New: Convert SPICE models into Simscape components

- Incorporate manufacturer data into simulation models (concurrent engineering)
- Smoothly parameterize the model by importing **SPICE** netlists

MATLAB EXPO 2019

+

testMosfetNetlist.txt 💥 🕂		testMosfetNetlist.txt 🗶 ipt015n10n5_I1.ssc 💥 🕂
.FUNC Idiode(Usd,Tj,Iss) {exp(min(lo	<pre>components(ExternalAccess=observe)</pre>
.FUNC Idiod(Usd,Tj) {a*Id	liode(I	X1 = test.s5_100_f_var(a=act,rsp=r
	subcircuit2ssc	<pre>rs=rs,rp=rd,dc=dc,rm=rm);</pre>
.FUNC Pr(Vss0,Vssp) {Vss0*Vss	0/Rm+	RG = elec.passive.instrumented_res
		LG = foundation.electrical.element
.FUNC J1(d,g,T,da,s,x) {a*(s*(exp(min		<pre>i_L.priority=priority.none);</pre>
		RSA = elec.passive.instrumented_re
.FUNC QCds(x) {Cds3*min(x,x1)+Cds0*ma		LS = foundation.electrical.element
FUNC OCda(y) (Cay/ this / y y2) +C	Low 3 km	i I priority-priority popol.

Recap: Determine thermal behaviour of converter (calibration)

Conduction loss

What we did

- Calibrate MOSFET model individually
- Model non-linear switching behavior of SEPIC converter with MOSFET component (Simscape Electrical)
- Leverage the multi-domain simulation capability of Simscape in understanding the thermal dynamics

MathWorks[®]

Power Converter Control Design Workflow Tasks

- 1. Component sizing (inductor, capacitor) & Design exploration
- 2. Determine thermo-electric behaviour of the converter (calibration)
- 3. Design control algorithm >> time/frequency domain specifications
- 4. Implement power electronic controls on an embedded processor

Design Control Algorithms

Starting point

- controller is out of tune
- plant can't be linearized

Plant Parameters: K = 3.4373, T, = 0.04

📣 PID Tuner (Sepic_new_closedloop_tune/MCU/Software/Discrete PID Controller) - Plant Identification

đ ×

Recap: Design Control Algorithm Based on Time/Frequency Domain Specifications

What we did

- Identify plant model from input output simulation data
- Use auto tuning algorithms to tune the control gains

MATLAB EXPO 2019

MathWorks[®]

Power Converter Control Design Workflow Tasks

- 1. Component sizing (inductor, capacitor) & Design exploration
- 2. Determine thermo-electric behaviour of the converter (calibration)
- **3.** Design control algorithm >> time/frequency domain specifications

4. Implement power electronic controls on an embedded processor

Verify Controller Stability

MATLAB EXPO 2019

Implementing Controller on an Embedded Processor

1. Generating C code

2. Traceability between model and code

 Integrating code into embedded procesor

MATLAB EXPO 2019

3. Integrating Code into Embedded Procesor

A. Hand-written software project

Embedded Software Project Pseudo-Code		
Main()	InterruptServiceRoutine()	
{ Commands_Init PWM_Init ADC_Init Encoder_Init	{ Commands_Read ADC_Read Encoder_Read	
Controller_Init while(1) { } }	PWM_Write }	

3. Integrating Code into Embedded Procesor

B. Prototyping from Simulink

3. Integrating Code into Embedded Procesor

B. Prototyping from Simulink

Implementation of the power electronic controls on an Embedded Processor

Recap: Implement Power Electronics Control on an Embedded Processor

What we did:

- Verify the controller for various test cases
- Generate code from MATLAB and Simulink models optimized for embedded controllers

MATLAB EXPO 2019

Power Converter Control Design Workflow Tasks

- 1. Component sizing (inductor, capacitor) & Design exploration
- 2. Determine thermo-electric behaviour of the converter (calibration)
- 3. Design control algorithm >> time/frequency domain specifications
- 4. Implement power electronic controls on an embedded processor

ABB Accelerates the Delivery of Large-Scale, Grid-Connected Inverter Products with Model-Based Design

Challenge

Accelerate the design and delivery of large, gridconnected power inverter products

Solution

Use Model-Based Design to model, simulate, and generate control software for modular, scalable power electronic building blocks

Results

- Prototypes delivered in two weeks, not three months
- Defect-free, optimized code generated
- Potential damage to test equipment mitigated

A cabinet of Power Electronic Building Blocks (PEBBs).

"Simulink and Embedded Coder enabled us to open the door to new markets. With increased productivity from extensive simulation and efficient code generation, we have confidence in our ability to produce the systems that larger customers are asking for in the time frames they want." - Dr. Robert Turner, ABB

- Extensive Libraries
- Power electronics models
- Advanced control design
- Automatic Code Generation

- Extensive Libraries >> modularity
- Power electronics models >> adequate fidelity
- Advanced control design >> performance
- Automatic Code Generation >> efficiency

- Extensive Libraries >> modularity
- Power electronics models >> adequate fidelity
- Advanced control design >> performance
- Automatic Code Generation >> efficiency

Customers routinely report 50% faster time to market

MATLAB EXPO 2019

Thank you for attending!

Any questions?

