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Part I. Data and Physics Models
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Why research into physics-based AI is necessary

Pure neural networks are unphysical!

PDE

Data

Model

PDE

Model
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Variable

Physics

Model

There is no magic solution. 

Scenario1.

Only observational data

available

Scenario2.

Only numerical analysis 

data available

Scenario1.

PDE available

but parameters unknown

Scenario2.

PDE available 

but poorly modeled

Scenario1. 

Only PDE available

RNN that cannot learn a simple ODE system
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Data-driven vs. model-driven vs. data & model
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Part II. Neural PDE Solvers

Deep Learning Approach to PDEs
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Deep Learning Approach to PDEs : PINN

PDE Solver

 Using neural networks directly to parametrize the solution to PDEs.

 Solve one instance of PDE at a time.

𝑢𝑛𝑛(𝑡, 𝑥)
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Deep Learning Approach to PDEs : Operator Learning

Operator Learning

 Learning a mapping from the parameters of the PDEs to the corresponding solution.

 Learning a family of PDEs from data.

Neural Network
(function to function 

mapping)

𝑔(𝑥) 𝑢𝑛𝑛(𝑡, 𝑥)
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Part II. Neural PDE Solvers

PINN to Forward-Inverse Problems

This part introduces several strategies to solve the below problem settings  

PDE

Model

Latent

Variable

Physics

Model



11

Introduction: What is Forward-Inverse problem?

Forward problem  Find a solution of a given differential equation

Inverse problem  Estimate model parameters or coefficients of the model(latent 

variables) based on the observed data

Forward-Inverse problem  Solve forward and inverse problems based on data
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Introduction: Forward-Inverse problems

GOALS

1. An easier way to solve differential equations. 

2. Reducing two steps to a single step.



13

Predicting the Growth of Lettuce

Water 

supply
Humidity

Temperature
Light

Mass of LettuceEnvironment variables

 Goal : to find the optimal growth environment to derive the daily maximum leaf weight of lettuce

AI Prediction

PDE

Model

Latent

Variable



14

Predicting the Growth of Lettuce

Latent variable
(Humidity, Temperature, 

and Water Supply)

Neural Network

𝑘(𝑡)

Logistic growth model

Mass of Lattuce

• Hourly Humidity, 

Temperature, and Water 

Supply

• Hourly Changing Mass

𝑑𝑦

𝑑𝑡
= 𝒌𝑦(1 −

𝑦

𝑎
)

Logistic growth model

However, this model does not 

reflect the growth conditions of 

lettuce

Data

Neural 

ODE 

Solver

v

v

Possible to Explore Optimal Control Conditions 

(Humidity, Temperature, Water Supply)
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COVID-19 Case Data

Cumulative Number of Positive Cases Nationwide in South Korea

Daily Recovered and Deceased Numbers Nationwide in South Korea

Korea Disease Control and Prevention Agency

(www.kdca.go.kr)

Status of confirmed cases by region, March 25, 2020.

Period: February 7 - March 30, 2020, South Korea

Data Used

PDE

Model

Latent

Variable

Total Seoul Busan … Jeju

Confirmed 681 165 10 … 1

Recovered 10,275 614 131 … 13

Deceased 269 4 3 … 0

Total 11,225 783 144 … 14
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COVID-19 Spread Prediction and Prevention Policies

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼

𝑁 ≔ 𝑆 + 𝐼 + 𝑅 = 1
(Considered as a Proportion 

of the Population)

Susceptible
(high-risk group

for infection)

Infectious
(Infected Group)

Recovered
(Recovered

/Deceased Group)

Infection by

Infected Individuals

Loss of Infectiousness 

Due to Recovery or Death

𝛾𝛽

Mathematical

Model
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COVID-19 Spread Prediction and Prevention Policies

Change Patterns : Results Using Deep Learning

S(t)

high-risk group for infection

I(t)

Infected Group

R(t)

Recovered/Deceased Group
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COVID-19 Spread Prediction and Prevention Policies

• Detection of Changes in the Number of Confirmed Cases 

Approximately 4 Days in Advance

• Analysis of the Impact of Prevention Policies on 

Containing the Spread
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Experiments: Transport equation

 Experimental result for 1D transport equation

PDE

Model

Latent

Variable



20

Experiments: Heat equation
 Experimental result for 2D heat equation with 𝑢(0,𝑥,𝑦)=𝑥(1−𝑥)𝑦(1−𝑦)
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Experiments: Wave equation
 Experimental result for 2D wave equation
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Experiments: Lotka-Volterra
 Experimental result for Lotka-Volterra equation
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Semiconductor Heat Management

• Semiconductor chips (ICs) are the main source of heat in electronic equipment

• Overheating is a major cause of chip failure, directly affecting the lifespan of the chip

• As semiconductor chip sizes continue to shrink, thermal management becomes increasingly critical

• Proper chip placement and cooling strategies are essential to prevent critical components from overheating and failing

Physics

Model
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Semiconductor Heat Management - Heat Sink Based Heat Spreading Model

𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 𝑞(𝑡, 𝑥)

Sink

Chip

Ambient

• Semiconductor heat dissipation model through a heat sink

• Verifying the feasibility of simulation using PINN through simple modeling
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Semiconductor Heat Management - Heat Sink Based Heat Spreading Model

• Modeling using the problem of solving PDEs for three systems: Chip, Sink, and Ambient
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Semiconductor Heat Management – PINN Structure
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Semiconductor Heat Management – PINN Simulation Results
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Semiconductor Heat Management – PINN Simulation Results(continued)
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Semiconductor Heat Management – PINN Simulation Results
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Applications of Neural Simulators - Predicting Battery Temperature 

and Lifespan

ㅍ

 Lithium-ion batteries emit heat during repeated charging and discharging cycles.

 This process causes degradation, affecting the battery's lifespan.

 Accurately predicting battery lifespan allows for precise timing of battery replacement.

 Managing the lifespan of individual batteries is especially challenging in large battery cell containers, not just simple 

single batteries
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Applications of Neural Simulators - Predicting Battery Temperature 

and Lifespan

 (a), (b), (c) perform temperature prediction 

using a basic ANN structure.

 (d), (e) perform temperature prediction 

using a PINN structure. 

Battery Temperature Prediction Results Solved Using the PINN Inverse Problem Concept

Cho, G. (2022). Artificial Neural Network Methods for Lithium-Ion Battery Behavior Predictions (Doctoral dissertation).
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Metal Cutting

Mechanical System

Mathematical Model

Physics

Model
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Metal Cutting

Mathematical Model

• It allows for rapid prediction of temperature distribution as the material, process conditions, and thermal conditions 
change



34

Part II. Neural PDE Solvers

Operator Learning
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Galerkin Transformer

𝑦𝑖 =෍

𝑗

𝐾 𝑖, 𝑗 𝑢𝑗

Matrix Multiplication

𝑦 𝑥 = ∫ 𝐾 𝑥, 𝑦 𝑢 𝑦 𝑑𝑦

Kernel Integration

Neural Network

Advantages
 Can be applied to irregular meshes

 Broad range of applications
Disadvantages

 Vulnerable to overfitting

 Few comparative experimental results

Heatsink simulation
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Fourier Neural Operator

Convolution

𝑦 𝑥 = ∫ 𝐾 𝑥 − 𝑦 𝑢 𝑦 𝑑𝑦

Kernel Integration

Neural Network

 High performance on regular mesh data

 Many comparative experimental results

 Higher computational complexity than Galerkin

Transformer

 Difficult to apply to irregular meshes

𝑦𝑖 =෍

𝑗

𝐾 𝑖 − 𝑗 𝑢𝑗

Navier-Stokes
Simulation

Advantages Disadvantages
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Deep Operator Network(DeepONet)

Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature machine intelligence, 3(3), 218-229.

Learning an operator 𝐺: 𝑢 𝑥 → 𝐺 𝑢 (𝑦) using the network

Data Model
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Deep Operator Network(DeepONet)

 A network trained to infer the value at a desired location 𝑦 based on the measurements{𝑢(𝑥)}

 Easy to implement

 First proposed model

 Abundant theoretical analysis resources

 Lower accuracy compared to other recent 

models (FNK, gk-Transformer)
Advantages Disadvantages
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Applications of Neural Simulators – Navier-Stokes Simulation

 100 Times Faster Analysis Possible

Case 1

Case 2

Initial Condition Ground Truth Prediction
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