MATLAB EXPO

2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

DDS Blockset 및 System Composer를 활용한 무인항공기 시스템의 분산 시뮬레이션과 아키텍처 설계

유성재, 매스웍스코리아

System of Systems Challenges are bigger as the perspective grows

Model-Based Design

Monolithic Application

No/minimal SW reuse

High SW-HW coupling

Monolithic update

SOA (Service Oriented Architecture)

Migration from Legacy Model to SOA Architecture Model

Middleware Support

ROS/ROS2

Get Started with ROS Toolbox
ROS Toolbox

DDS

DDS Blockset Shapes Demo

DDS Blockset

AUTOSAR

Create and Configure
AUTOSAR Software
Component
AUTOSAR Blockset

R2019b

R2021a

From System Architecture to deployment of DDS Application

Architecture

DDS Model & Simulation

Deployment & Monitoring

System Composer

System-Level Simulation - Quadcopter

Component

Sub-system Architecture - Vehicle

Sketch Architecture & Elaborate Incrementally

Sketch system interfaces and elaborate incrementally

Sketch Architecture & Elaborate Incrementally

Sequence Diagram

Activity Diagram

DDS Blockset

Data Distribution Services (DDS)

Data Distribution Services (DDS) uses SOA methodology, and directly addresses publish and subscribe communications for real-time and embedded systems.

DDS addresses the needs of applications that require real-time data exchange in industries like aerospace and defense, automotive, and robotics.

R2021a

DDS: Publishers and Subscribers

 Publishers : Applications that send data

Subscribers : Applications that receive data

DDS Blockset

FOR System and algorithm engineers
 WHO Develop software for DDS (Data Distribution Service) based embedded systems
 Provides • Apps and blocks to model and simulate DDS software applications

 DDS dictionary to manage DDS definitions
 • API to Import and Export DDS definitions
 • C++ production code generation with DDS APIs (with Embedded Coder)

DDS Blockset fully integrates with third-party DDS stacks including RTI Connext and eProsima Fast DDS

DDS Blockset is supported for all platforms - Mac, Windows and Linux

DDS Layered Architecture

- DDS implemented in 3rd party libraries
- Application generated from Simulink model
- Code from Simulink model links to 3rd party DDS Libraries
- Open source and paid implementations

Deploy DDS Application to Linux Target

Embedded Coder Support Package for Linux Applications

DEMO

System Architecture of Multiple Aircraft Systems

Architecture: Component Creation

Architecture: Port and Connection

Component: Behavior Model Creation

Component: Import DDS Interface definitions

Import DDS definitions from XML or create new Definitions

DDS Application Designer

Component : Import DDS Interface definitions

 Import DDS definitions from XML or create new Definitions

- Define/Modify DDS definitions in DDS Dictionary
 - Topic Types
 - Domains
 - QoS

Component: Import DDS Interface definitions

- Import DDS definitions from XML or create new Definitions
- Define/Modify DDS definitions in DDS Dictionary
 - Topic Types
 - Domains
 - QoS

Component : Import DDS Interface definitions

Component: Model DDS Application

- Import DDS definitions from XML or create new Definitions
- Define/Modify DDS definitions in DDS Dictionary
- Model applications

Use DDS Blocks to model a Publisher or Subscriber

Component: Model DDS Application

Component: Deployment of DDS Application

- Import DDS definitions from XML or create new Definitions
- Define/Modify DDS definitions in DDS Dictionary
- Model applications
- Simulate DDS models including QoS
- Generate DDS executables and deploy on a DDS network

```
bool writeWithWriter(const PosType* data, std::string participantName, std::string w
   DDS_DataWriter* writer = getWriter(writerName, participantName);
   PosTypeDataWriter* fooWriter = PosTypeDataWriter_narrow(writer);
   if(!fooWriter) {
       return false;
   const DDS_ReturnCode_t ret = PosTypeDataWriter_write((PosTypeDataWriter*)writer,
   return (ret == DDS_ReturnCode_t::DDS_RETCODE_OK);
bool createParticipant(std::string participantName) {
   if (participants.find(participantName) == participants.end()) {
       DDS DomainParticipant* participant =
           DDS_DomainParticipantFactory_create_participant_from_config(
           DDS TheParticipantFactory, participantName.c str());
       if(!participant) {
           return false;
       participants[participantName] = participant;
   return true;
```

With Embedded coder, generate

- C++ production code with DDS APIs
- XML or IDL files from Simulink models to deploy

Component: Deployment of DDS Application

- Import DDS definitions from XML or create new Definitions
- Define/Modify DDS definitions in DDS Dictionary
- Model applications
- Simulate DDS models including QoS
- Generate DDS executables and deploy on a DDS network

Full integration with third-party DDS stacks including RTI Connext and eProsima Fast DDS

Component: Deployment DDS Applications (Single Application)

System: Deployment of DDS Applications

Key Takeaways

Architecture

System of Systems architectures are evolving, pushed by need for advanced, complex functions

DDS Model & Simulation

New, service-oriented architectures are required to master complexity and enable frequent updates

Deployment & Monitoring

You can design, simulate and generate code to deploy service-oriented applications in Simulink, reusing your existing expertise and models

DEMO Booth

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

