MATLAB EXPO

2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

MATLAB을 활용한

TI mmWave 레이더 개발

서기환, MathWorks

Develop Radar Systems

with MATLAB and Simulink

Visualization

Metrics

Tracking Algorithm Development Workflow

Alpha Beta filter

Kalman filters

Particle filter

- GSF, IMM

Multiple models

- Linear, EKF, UKF, CKF, MSCEKF

Data Association

tracks

observations

- 2D assignment
- S-D assignment
- K-best assignment

Trackers

2

- GNN, JPDA, PHD
- MHT (track-oriented)
- Trackers components
 - History and score logic
 - etc.....

Two Personas using Radar Sensor Models

Three Abstraction Levels for Support of Full Radar Life Cycle

^{*} See Design and Simulate an FMCW Long-Range Radar (LRR) Example here

Radar Data Synthesis

Micro-Doppler signatures

Clutter and Channel Modeling

The Reality is...

How can we model this environment?

Test and Verification of the Radar

Connect MATLAB to Hardware

Live Data
 Streaming to and from Hardware

 Generating Code and Targeting Hardware

Before TI Radar Support

HDL and **C** code generation

Instrument Control Toolbox

SDR Support Packages
Communications System Toolbox

Fixed-Point Designer
SoC Blockset
HDL Coder
Embedded Coder
Wireless HDL Toolbox

Multi-vendor hardware support

Getting Started with TI mmWave Radar Sensors

Required MathWorks® Products

- MATLAB®
- Radar Toolbox
- Radar Toolbox Support Package for Texas Instruments mmWave Radar Sensors

The support package provides support for these EVMs:

- TI IWR6843ISK
- TI AWR6843ISK
- TI IWR6843A0PEVM
- TI AWR6843A0PEVM
- TI AWR1843AOPEVM
- TI AWR1642BOOST
- TI IWR1642BOOST
- TI IWRL6432BOOST

Support Package for Texas Instruments mmWave Radar Sensors

Hardware Setup screens

mmWaveRadar Object

```
>> rdr = mmWaveRadar("TI IWR6843ISK")
 rdr =
   mmWaveRadar with properties:
                        BoardName: "TI IWR6843ISK"
                       ConfigPort: "COM7"
                         DataPort: "COM8"
                       ConfigFile: "C:\Prototype\MaxRangResolution.cfg"
                      SensorIndex: 1
                  MountingLocation: [0,0,0]
                     MountingAngle: [0,0,0]
                       UpdateRate: 1
                  RangeResolution: 4.400000e-02
              RangeRateResolution: 1.300000e-01
                AzimuthResolution: 14
              ElevationResolution: 25
                     MaximumRange: 10
                 MaximumRangeRate: 5
Show all properties all functions
```

```
>> [objDets, time, measurements, overrun] = rdr()
          objDetections =
              3×1 cell array
                  {1×1 objectDetection}
                  {1×1 objectDetection}
                  {1×1 objectDetection}
                   time =
                              6
            measurements =
              struct with fields:
                    RangeProfile: [256×1 double]
                    NoiseProfile: [256×1 double]
            RangeDopplerResponse: [256×16 double]
              RangeAngleResponse: [256×63 double]
                       RangeGrid: [256×1 double]
                     DopplerGrid: [16x1]
                       AngleGrid: [64x1]
                 overrun =
                             1
```


TI mmWave Radar Board Configuration

mmWave Demo visualizer application

- Platform
- Antenna Config
- Desirable Config
- Frequency Band

Save config to PC (.cfg)

(*) For SDK 2.1 LTS release, please use this link: https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/2.1.0/

TI mmWave Radar Examples

Getting Started with Radar Toolbox Support Package for Texas Instruments mmWav...

Use Radar Toolbox Support Package for Texas Instruments® mmWave Radar Sensors to configure and read detections (point cloud data) and

People Tracking Using TI mmWave Radar

Use data captured using the Texas Instruments (TI) mmWave radar for tracking people in an indoor environment. You learn how to use a

Track Objects in a Parking Lot Using TI mmWave Radar

Use data captured using the Texas Instruments (TI) mmWave radar for tracking objects in a parking lot. You learn how to use a processing chain

People Tracking Using TI mmWave Radar

Track Objects in a Parking Lot Using TI mmWave Radar

Live Demo at the Demo Booth

DBSCAN Clustering – Centroid Estimation

Trackers for Various Applications

Key Takeaways

Kalman filters

Particle filter

- GSF, IMM

Multiple models

- Linear, EKF, UKF, CKF, MSCEKF

- 2D assignment
- S-D assignment
- K-best assignmemt
- GNN, JPDA, PHD
- MHT (track-oriented)
- Trackers components
 - History and score logic
 - etc.....

Key Takeaways

A rich library of tracking algorithms

Filters

- Alpha Beta filter
- Kalman filters
 - Linear, EKF, UKF, CKF, MSCEKF
- Particle filter
- Multiple models
 - GSF, IMM

Data Association

- 2D assignment
- S-D assignment
- K-best assignmemt

Trackers

- GNN, JPDA, PHD
- MHT (track-oriented)
- Trackers components
 - History and score logic
 - etc.....

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

