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Background

 Need to Change SW Development Methods https://www.sjf.tuke.sk/transferinovacii/pages/archiv/transfer/29-2014/pdf/251-253.pdf

https://www.jabil.com/blog/automotive-industry-trends-point-to-shorter-product-development-cycles.html

Growing complexity of automotive software and a demand for more 

and more features in a shorter timeframe.

The increase in complexity is outpacing our improvements in 

efficiency
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Background

 Parallel Development Process 
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Background

 Virtualization
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Networks

Past : API
on communication level

Future : API 
on software level

Functions

Any (heterogeneous)
virtualized middleware, 

basic software, 
hypervisor and 

operating systems

We need to define the API on the software architecture! This build the basis for virtualization

(Virtual)

Prototyping framework

Hardware

Hardware Abstraction Layer

Middleware & APIs

Application Application

Application Application

Application can be developed independently 
of the specific platform
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Background

 Virtual Prototyping Framework

② virtual (in-vehicle) prototyping

① Development & Simulation (MBD)

③ Vehicle integration (embedded)

Limited to development or testing of basic functions
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Background

 Development Process with Some Use Cases

ADAS Domain ControllerPrototyping framework

Embedded Software Development
on embedded target

Algorithm Development
on cross-platform 

prototyping framework

 Purely theoretical and mathematical domain
 PC-based development

 Depends on hardware architecture
 Performance and power consumption are essential
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Challenge 

 Workflow using Model-Based Design

Simulink Models
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Review and static analysis
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PIL back-to-back testing

Static code analysis

1

23

4

1 Software architecture authoring & management 2 Manually updated ROS wrapper

3 Ensuring tracibility between requirements and software 4 Simulation-in-the-Loop
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Solution

SW Architecture Authoring using System Composer & AUTOSAR Component Designer 1

Customized Wrapper Generator2

Tracibility using Requirements Toolbox3

Improve Speed & Flexibility of SILs with Linux Runtime Manager4

System Composer Customized Wrapper 

Generator

Tracibility matrix Linux Runtime Manager
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