
0

자율주행소프트웨어개발을위한
모델기반시스템엔지니어링에대한사례
이동한책임연구원, HL Klemove

2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

1

Background

 Need to Change SW Development Methods https://www.sjf.tuke.sk/transferinovacii/pages/archiv/transfer/29-2014/pdf/251-253.pdf

https://www.jabil.com/blog/automotive-industry-trends-point-to-shorter-product-development-cycles.html

Growing complexity of automotive software and a demand for more

and more features in a shorter timeframe.

The increase in complexity is outpacing our improvements in

efficiency

2

Background

 Parallel Development Process

3

Background

 Virtualization

AP (CPU / GPU) Safety µC

Hypervisor

Android Linux

Adaptive AUTOSAR

Classic

AUTOSAR

AD/ADAS Apps & Service

HPC Hardware

AP (CPU / GPU) Safety µC

Hypervisor

Android Linux

Adaptive AUTOSAR

Classic

AUTOSAR

AD/ADAS Apps & Service

HPC Hardware

AP (CPU / GPU) Safety µC

Hypervisor

Android Linux

Adaptive AUTOSAR

Classic

AUTOSAR

AD/ADAS Apps & Service

HPC Hardware

Networks

Past : API
on communication level

Future : API
on software level

Functions

Any (heterogeneous)
virtualized middleware,

basic software,
hypervisor and

operating systems

We need to define the API on the software architecture! This build the basis for virtualization

(Virtual)

Prototyping framework

Hardware

Hardware Abstraction Layer

Middleware & APIs

Application Application

Application Application

Application can be developed independently
of the specific platform

4

Background

 Virtual Prototyping Framework

② virtual (in-vehicle) prototyping

① Development & Simulation (MBD)

③ Vehicle integration (embedded)

Limited to development or testing of basic functions

5

Background

 Development Process with Some Use Cases

ADAS Domain ControllerPrototyping framework

Embedded Software Development
on embedded target

Algorithm Development
on cross-platform

prototyping framework

 Purely theoretical and mathematical domain
 PC-based development

 Depends on hardware architecture
 Performance and power consumption are essential

6

Challenge

 Workflow using Model-Based Design

Simulink Models

System

Requirements

Software

Requirements

Software

Architecture

Implementation

Model

Generated

Code

Integrated

Object Code

Tracibility Modeling
Code

generation

Compile &

Linking

Requirements

authoring

Unit and integration testing

Review and static analysis

SIL back-to-back testing

PIL back-to-back testing

Static code analysis

1

23

4

1 Software architecture authoring & management 2 Manually updated ROS wrapper

3 Ensuring tracibility between requirements and software 4 Simulation-in-the-Loop

7

Solution

SW Architecture Authoring using System Composer & AUTOSAR Component Designer 1

Customized Wrapper Generator2

Tracibility using Requirements Toolbox3

Improve Speed & Flexibility of SILs with Linux Runtime Manager4

System Composer Customized Wrapper

Generator

Tracibility matrix Linux Runtime Manager

8

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

