MATLAB EXPO

무선 시스템 설계를 위해 MATLAB을 USRP에 연동하는 데모

정승혁, 매스웍스코리아

Features Offered, Use Cases Supported

Wireless Testing Solutions in MATLAB

MATLAB Solutions	Wireless Testbench	Comms Toolbox SDR HSPs	Instrument Control Toolbox
Max Supported Rate	250 Msps	20 Msps	XX Gsps
Radio I/O	✓	✓	✓
FPGATargeting	✓	×	×
Supported Radio Price (\$)	8K to 35K	Up to 4K	\$\$\$\$\$

Supported Workflows by Wireless Testbench

Workflows Supported					
Workflow 1: Radio I/O	Transmit and capture wideband signals at up to 250 Msps	Transmit/Capture using up to 2GB/4GB of on-board storage √ 17s of 5G data @30.72 MSPS √ 6.5s of WLAN data @80 MSPS √ 2s at full N321 device rate (250MSPS)			
Workflow 2: Intelligent Capture	Intelligent data capture with FPGA-based detectors and re-sampler	Reduce data requirements by intelligently capturing only waveforms of interest by prebuilt detectors <pre></pre>			
Workflow 3: Targeting	USRP Targeting	Integrate custom IP blocks with RF Network-on-Chip (RFNoC™) ✓ Radio customization ✓ Rapid prototyping ✓ Easy to use			

Workflow 1: Radio VO

- Transmit/capture at full device rates (up to 250 MSPS)
- Capture using up to 2GB (4GB on X410) of on-board storage
 - >17s of 5G data @30.72 MSPS
 - > 6.5s of WLAN data @80 MSPS
 - > 2s at full N321 device rate (250MSPS)
- Capture to host via high-speed streaming
- Capture to file or workspace
- Select arbitrary sample rates
 - Farrow-based rate conversion
 - E.g. select 40Msps for WLAN signal capture on N310
- Generate and transmit waveforms with Wireless Waveform Generator app

Workflow 2: Intelligent Capture

- Use FPGA-based preamble detection to capture only the signal of interest
- Transmit/capture at full device rates (up to 250 MSPS)
- Preamble sequences of up to 1024 taps
- Select arbitrary sample rates with farrow-based rate conversion
- Detect and capture a signal using signal energy as the trigger
- Transmit test waveforms in parallel to detection

```
pd = preambleDetector("MyRadio");
pd.SampleRate = 40e6;
pd.Preamble = WLANPreamble;
data = capture(pd, milliseconds(100))
```


Workflow 3: USRP Targeting

- Follows standard HDL Coder workflow
- Generate bitstream and control from MATLAB
- Steps
 - 1. Select Platform and parameters
 - 2. Map DUT(user logic) IOs (data & register)
 - 3. Generate HDL and wrap it as IP core (single click)
 - 4. Generate Bitstream with User DUT (single click)
 - Generate MATLAB script to control DUT (single click)

Hardware

Supported USRPSDRs

Product

Features Offered, Use Cases Supported

Wireless Testbench: Examples

https://www.mathworks.com/help/wireless-testbench/examples.html

Wireless Testbench: Examples

Capability	Examples	Description	
Transmit and Capture	Capture wideband spectrum	 ✓ Capture a wideband spectrum using multiple antennas ✓ Use the multiband combiner ✓ Capture up to 800 MHz of bandwidth 	
	Capture signals for AI training	 ✓ Scans a wide bandwidth to determine 5G NR and LTE signal ✓ Captures and labels the bandwidth of the associated carrier waveforms ✓ Captures unknown signals 	
Spectrum Monitoring	Triggered Capture using Preamble Detection	 ✓ Use USRP to capture data from the air using preamble detection. ✓ Use the transmit capabilities of the radio to loop back a test waveform 	
	Triggered Capture Using Energy Detection	 ✓ Use USRP to capture data from the air using energy detection. ✓ Use the transmit capabilities of the radio to loopback a test waveform 	
Live Data I/O	OFDM Transmitter and Receiver	 ✓ Run a complete end-to-end OFDM transmission system ✓ Use a single-input single-output (SISO) channel. ✓ Mimics standardized transmission schemes like 5G NR 	
<u>USRP Targeting</u>	Multiport Packet-Based USRP Targeting	 ✓ Deploy a multi-port packet-based algorithm on USRP ✓ Use Simulink® to model an algorithm ✓ Generate bitstream and MATLAB scripting interface 	

Product

Features Offered, Use Cases Supported

Wireless Testbench: Supported SDR Hardware

Supported SDR Hardware: Specifications

N310		X310	N32X	X410
 Channels: up to device 100 MHz bandwidth/chang 10 MHz – 6 GHz Large user-progreped FPGA, Zynq-71 Configurable sages 122.88, 125, and MS/s 16-bit ADC, 14-bit ADC 	device 160MHz channel channel Frequer GHz 00 Xillinx Ki FPGA device * 160MHz channel * Frequer GHz * Allinx Ki FPGA * 16-bit A	Is: up to 2X2 per z bandwidth per ncy range: DC - 6 ntex-7 XC7K410T DC, 14-bit DAC	 2x2 MIMO 200 MHz BW per channel 3 MHz – 6 GHz range Zynq XC7Z100-2FFG900I 200/245.76/250 MHz sample rates 16-bit ADC, 14-bit DAC 	 1 MHz to 7.2 GHz frequency range (tunable up to 8GHz) Up to 400 MHz of instantaneous bandwidth per channel 4 RX, 4 TX in half-wide RU form factor Xilinx Zynq Ultrascale+ ZU28DR RFSoC 12-bit ADC, 14-bit DAC IQ Sample Clock rates up to 500 MS/s

Wireless Testbench: R2024a

Test wideband wireless systems and perform spectrum monitoring

Transmit and capture wideband signals at up to 250 MSPS

Transmit/Capture using up to 2GB/4GB of on-board storage

- √ 17s of 5G data @30.72 MSPS
- √ 6.5s of WLAN data @80 MSPS
- ✓ 2s at full N321 device rate (250MSPS)
- Capture to host via high-speed streaming

Intelligent data capture using FPGA-based detectors

Reduce data by intelligently capturing only waveforms of interest

- Correlates the input signal with a known preamble sequence
- ✓ Detect and capture a signal using signal energy as the trigger
- ✓ Farrow-based rate conversion

USRP Targeting

Integrate custom IP blocks with RF Network-on-Chip (RFNoC[™])

- ✓ Radio customization
- Rapid prototyping
- ✓ Easy to use

Wireless Testbench: Simple Radio Set Up

Features

- Rapidly set up the wireless test environment
- Easy installation of third-party dependencies
- Radio setup wizard to configure the radio

Summary and Key Takeaways

Wireless Testbench Workflows:

- High-speed data transmit capture capability up to 250 MSPS
- Intelligent signal detection using a preamble detector

Wireless Testbench Examples:

- High-speed data transmission and capture
- Spectrum Monitoring
- USRP Targeting

Wireless Testbench hardware support:

USRP N3XX, X3XX, X410

Wireless Testbench Features:

- Transmit and capture wideband signals
- Intelligent data capture using FPGA-based detectors
- Integrate custom IP blocks with RF Network-on-Chip

Required Products:

- MATLAB, Signal Processing Toolbox, DSP System Toolbox, Communications Toolbox
- HDL Coder (for HDL Code Generation)

https://www.mathworks.com/products/wireless-testbench.html

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

