MATLAB EXPO

MATLAB을 활용한 TI mmWave 레이더 개발

서기환, 매스웍스코리아

한승구, 매스웍스코리아

Test and Verification of the Radar

Connect MATLAB to Hardware

Live Data
 Streaming to and from Hardware

 Generating Code and Targeting Hardware

Before TI Radar Support

HDL and **C** code generation

Instrument Control Toolbox

SDR Support Packages
Communications System Toolbox

Fixed-Point Designer
SoC Blockset
HDL Coder
Embedded Coder
Wireless HDL Toolbox

Multi-vendor hardware support

Getting Started with TI mmWave Radar Sensors

Required MathWorks® Products

- MATLAB®
- Radar Toolbox
- Radar Toolbox Support Package for Texas Instruments mmWave Radar Sensors

The support package provides support for these EVMs:

- TI IWR6843ISKI
- TI AWR6843ISK
- TI IWR6843A0PEVM
- TI AWR6843AOPEVM
- TI AWR1843AOPEVM
- TI AWR1642BOOST
- TI IWR1642BOOST
- TI IWRL6432BOOST

Support Package for Texas Instruments mmWave Radar Sensors

Hardware Setup screens

mmWaveRadar Object

```
>> rdr = mmWaveRadar("TI IWR6843ISK")
rdr =
  mmWaveRadar with properties:
                        BoardName: "TI IWR6843ISK"
                       ConfigPort: "COM7"
                         DataPort: "COM8"
                       ConfigFile: "C:\Prototype\MaxRangResolution.cfg"
                      SensorIndex: 1
                  MountingLocation: [0,0,0]
                     MountingAngle: [0,0,0]
                       UpdateRate: 1
                  RangeResolution: 4.400000e-02
              RangeRateResolution: 1.300000e-01
                AzimuthResolution: 14
              ElevationResolution: 25
                     MaximumRange: 10
                 MaximumRangeRate: 5
Show all properties all functions
```

```
>> [objDets, time, measurements, overrun] = rdr()
          objDetections =
              3×1 cell array
                  {1×1 objectDetection}
                  {1×1 objectDetection}
                  {1×1 objectDetection}
                    time =
                              6
            measurements =
              struct with fields:
                    RangeProfile: [256×1 double]
                    NoiseProfile: [256×1 double]
            RangeDopplerResponse: [256×16 double]
              RangeAngleResponse: [256×63 double]
                       RangeGrid: [256×1 double]
                     DopplerGrid: [16x1]
                       AngleGrid: [64x1]
                 overrun =
                             1
```


TI mmWave Radar Board Configuration

mmWave Demo visualizer application

- Platform
- Antenna Config
- Desirable Config
- Frequency Band

Save config to PC (.cfg)

(*) For SDK 2.1 LTS release, please use this link: https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/2.1.0/

TI mmWave Radar Examples

Getting Started with Radar Toolbox Support Package for Texas Instruments mmWav...

Use Radar Toolbox Support Package for Texas Instruments® mmWave Radar Sensors to configure and read detections (point cloud data) and

People Tracking Using TI mmWave Radar

Use data captured using the Texas
Instruments (TI) mmWave radar for
tracking people in an indoor
environment. You learn how to use a

Track Objects in a Parking Lot Using TI mmWave Radar

Use data captured using the Texas Instruments (TI) mmWave radar for tracking objects in a parking lot. You learn how to use a processing chain

People Tracking Using TI mmWave Radar

Track Objects in a Parking Lot Using TI mmWave Radar

Live Demo at the Demo Booth

DBSCAN Clustering – Centroid Estimation

Trackers for Various Applications

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

