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As AI use rises in production, there is a growing need to explain, 

verify and validate model behavior in safety-critical situations
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Challenges in Verification and Validation of AI-enabled Systems

Traceability

Robustness

Data management

Data quality

Transparency

Bias

Coverage

Explainability

Data completeness

AI/ML requirements

Verifiability

Testing

Consistency

Generalizability

Fairness
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Critical System Certification

What is 

Certification?

Software Certification 

standards

What do standards 

cover?

Formal guarantee that the system 

meets safety and reliability standards

Verification & Validation: 

ensure systems meet requirements

Lifecycle management:

from design to maintenance

Criticality classification: 

failure impact-based

Traceability & documentation & testing

Aviation              Automotive

DO-178C ISO 26262

Medical Devices Railway:

EC 62304 EN 50128

Ensure that the software development 

follows state-of-the-art processes

examples
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Industries are making progress on verifying AI in systems through 

whitepapers, standards and planning

European Aviation Safety Agency AI Roadmap

Automotive Aerospace Medical Devices

https://www.easa.europa.eu/en/newsroom-and-events/news/easa-artificial-intelligence-roadmap-20-published
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Agenda
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in Airborne Systems:
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Certifying DAL D 

A Case Study:

 Runway Sign Classifier
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Why Certifiable AI in Aviation?

Single pilot 

operation

Predictive 

maintenance
Cockpit voice 

recognition

Runway detection

Collision 

avoidance

Autonomous flight
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What is DO-178C?

DO-178C: Aviation software standard published by the Radio Technical 

Commission for Aeronautics (RTCA)

Long Service History
(1982-2023)

Built trust

Level Failure condition

A Catastrophic

B Hazardous

C Major

D Minor

E No Safety Effect

▪ Guidance for software design in aircraft, helicopters, 

UAVs, and spacecraft.

▪ Defines five software levels based on safety impact.
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Several DO-178C objectives cannot be directly applied to software with a 

Machine Learning component.

Why is Machine Learning Certification a problem?

How can we certify Machine Learning component against 

DO-178C? 

How can we build trust in new verification methods for 

Machine Learning?
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Industry and Regulators are making significant progress for Machine 

Learning Certification in Aerospace

Sources: easa.europa.eu, eurocae.net, faa.gov

202320222020 2021

https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann-ii
https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/en/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://www.easa.europa.eu/en/downloads/137928/en
https://www.easa.europa.eu/en/document-library/general-publications/easa-collins-aerospace-ipc-project-formula-formal-methods-use
https://www.easa.europa.eu/en/downloads/137631/en
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G-34/WG-114 Virtual Plenary Meetings Cross Communication

G-34/WG-114 Executive Committee

G-34/WG-114 Leadership

SG1 - Airborne & Ground Applications 

SG2 - ML Data Management & Validation 

SG3 - ML Design & Verification

SG4 - ML Implementation & Verification

SG5 - System & Safety Considerations for ML

SG7 - Process Considerations (Planning, Config. Mgmt., Quality, 

Levelling, and Certification/Approval)

MathWorks is playing an active role in working Group (EUROCAE 

WG-114 / SAE-34) for ARP6983

Established in 2019, Over 500 members In progress

Complementary to DO-178C

Expected to be published
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Traditional Software vs Machine Learning Systems

Traditional Software Machine Learning Systems

Code defines behavior
Inputs and outputs are clear

Code execution paths are known and fixed
Testing + High code coverage are key to minimize risk of bugs

Rely on Learned parameters

Robustness Dependent on:

Certification 

focus

Shift

code Training Data Learning Algorithms

Generalization
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How big is the gap between Machine Learning and traditional 

software development?

(*) AIR6988 “Artificial intelligence in aeronautical systems. statement of concerns.” EUROCAE, Tech. Rep., 2021

Requirement: "Maintain altitude change within ±10 feets."

Coverage

Traceability

Explainability
Rule-based

N Hidden layers

Inputs Outputs

Altitude Sensor Data
« Increase » 

or 
« Decrease » 

altitude

Data-driven

DO-178C: 15 out of 71 

incompatible objectives*
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Can we certify Machine Learning now?

Step #1: DAL D ML Workflow

▪ Black-box approach

▪ Based on existing standards

– DO-178C, ARP4754, DO-254

Step #2: DAL C ML Workflow

▪ Existing standards +

▪ Architectural mitigation

▪ ML-specific novel VnV

Failure Category Software 

Level (DAL)

DO-178C Objectives

Catastrophic DAL A • 71 objectives

• 30 require independence

Hazardous DAL B • 69 objectives

• 18 require independence

Major DAL C • 62 objectives

• 5 require independence

Minor DAL D • 26 objectives

• 2 require independence

No Safety Effect E • No required objectives

Step #1

Incremental Certification Approach for Low-Criticality ML Systems*

Step #2

* K. Dmitriev, J. Schumann and F. Holzapfel, "Toward Certification of Machine-Learning Systems for Low Criticality Airborne Applications," 2021 

IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 2021
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DAL D Black Box Approach

▪ DAL D: the origin of the source and object 

code does not matter

▪ Black-box verification satisfies all objectives

DO-178C Compliance Analysis
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W-shaped development process adapting the classical V-shaped 

cycle to ML applications

(Sub)system 

requirements 

& design

Data 

management

Learning 

process 

management

Model 

training

Learning 

process 

verification

Model 

implementation

Inference model 

verification & 

integration

Independent 
data and 
learning 

verification

AI/ML 
constituent 

requirements 
verification

(Sub)system 

requirements 

verification

Requirements 
allocated to 

AI/ML 
constituent

Source: EASA Concept Paper Proposed ISSUE 02 ‘First usable guidance for Level 1&2 machine learning applications
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W-shaped development process can coexist with V-shaped cycle for 

non-ML components

Source: EASA Concept Paper Proposed ISSUE 02 ‘First usable guidance for Level 1&2 machine learning applications

ML components

non-ML components

(Sub)system 

requirements 

& design

Data 

management

Learning 

process 

management

Model 
training

Learning 

process 

verification

Model 

implementation

Inference model 

verification & 

integration

Independent 
data and 
learning 

verification

AI/ML 
constituent 

requirements 
verification

(Sub)system 

requirements 

verification

Requirements 
allocated to 

AI/ML 
constituent

Traditional 

SW/HW 

item

Item 

containing 

ML model

Requirements 

allocated to 

non-ML items

Non-ML items 

requirements 

verification
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Case Study

Runway Sign Classifier: Certify an Airborne Deep Learning System
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Case Study
Runway Sign Classifier: Certify an Airborne Deep Learning System

ML Component

Data

Deep Learning Toolbox Example

DO Qualification Kit Example

System

https://www.mathworks.com/help/qualkitdo/ug/certifying-airborne-ml-system.html
https://www.mathworks.com/help/deeplearning/ug/verify-an-airborne-deep-learning-system.html
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Case Study
Runway Sign Classifier: Certify an Airborne Deep Learning System



2222

Define system requirements and allocate them to the AI constituent
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Define system requirements and allocate them to the AI constituent

System

ML Component

Data
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Requirements Toolbox allows you link system requirements to data 

requirements
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Map data requirements to your MATLAB data and review data in 

Image Labeler App

Hyperlinks open the 

datastores ready to view 

in the Image Labeler App 

for review
Image Labeler
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Map data requirements to your MATLAB data and review data in 

Image Labeler App
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Compute data coverage per data requirement

Examine data coverage in 

each of the operational 

conditions

Unfulfilled requirement on 

sign rotation
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Review Data Correctness

Manually corrected 

bounding box position

Incorrect bounding box position 

from synthetic data generation

Dataset Percentage 

Correctness = 99.6377%
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Data Augmentation

Boost accuracy by transforming data

Add variety without extra samples

Color jitter augmentation in HSV space

Random scaling by 50 percent

Examples:

Rotation

Flipping

Translation

Noise injection
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Increase productivity using Apps for design and analysis

Deep Network Designer 

Build, visualize, and edit 

deep learning networks

Machine Learning Apps

Train machine Learning Models
Reduced Order Modeler App

Create and train data-driven ROM 

of subsystems (including those 

with high-fidelity 3rd party tools)

Reinforcement Learning Designer

Design, train, and simulate agents for 

existing environments

Track training progress and 
performance for different  experiments

Experiment Manager 

Run multiple experiments, analyze and 

compare results, optimize your AI model

Design your AI model
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Manage, train and verify the learning process

Iterate faster with 

productivity apps
Accelerate model training 

with GPUs and the cloud 
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Manage, train and verify the learning process
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Manage, train and verify the learning process

Using high level APIs

trainnet
trainYOLOv3ObjectDetector
trainYOLOv4ObjectDetector

…

Using Custom Training 

loop

Write your own training loop

Different ways to train 

DL networks in MATLAB
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Manage, train and verify the learning process
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Manage, train and verify the learning process
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The ideal model 

delivers precision 1 at 

all recall levels.

YOLO V3 meets the 

required average 

precision per class of at 

least 95%.
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Deploy to targets
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Deep Learning C/C++ Code Generation

Intel CPUs

Generic (library-free) 

C/C++ Source Code

Intel MKL-DNN

Optimization Library

MATLAB 

Coder, 

Simulink 

Coder

Any CPU

Inc. ARM Cortex-A/M

Can add quantization, 

SIMD, OpenMP, CRLs, 

and other optimizations

GPU Coder

NVIDIA GPU

Generic (library-free) 

CUDA Source Code

Optimization Libraries:

Cudnn

TensorRT

Address library version mismatch issues

Fast and generally best choice
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Flexible library deployment for a given model

>> analyzeNetworkForCodegen(yolov3Detector.Network)

                   Supported
                   _________

    none             "Yes"  
    arm-compute      "Yes"  
    mkldnn           "Yes"  
    cudnn            "Yes"  
    tensorrt         "Yes" 
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How to optimized performance in hardware constrained 

environment? 
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Model Compression

Pruning Projection Quantization

Structural Compression Datatype Compression

Conversion or parameters 

to lower precision 

datatypes (bfloat16, int8)

Removing unimportant 

parts of networks

Project learnable 

parameters into a lower 

dimensional space
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Model Compression

>>deepNetworkDesigner(yolov3Detector.Network)

Analyze network for Compression

- Maximum possible memory reduction
- Pruning and projection support
- Ability to prune individual layers
- Layer memory
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Quantization, compression and code generation
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Quantization, compression and code generation
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Integrate your AI model with Simulink
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Requirements Verification through testing

Establish Traceability between Requirements, Design, and Tests



46

Agenda
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DAL-C Certification requires a deeper understanding of your AI model

High-level software 

(or system) 

Requirements

Software 

Architecture

Tests for High-Level 

Requirements

Integrated 

Object Code

ML model(s)

ML Source 

Code

Non-ML Source 

Code

COTS Object 

Code

  L   “B   k B x”

High-level software 

(or system) 

Requirements

Software 

Architecture

Tests for High-Level 

Requirements

Integrated 

Object Code

ML model(s)

ML Source 

Code

Non-ML Source 

Code

COTS Object 

Code

DAL C
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Verification and Validation for Deep Neural Networks

Use Formal Verification Methods to Ensure Robustness

Provide Safety Guardrails for Handling Unseen Data

https://www.mathworks.com/help/deeplearning/verification.html

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/help/deeplearning/verification.html
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Verify robustness of deep learning networks

Use Formal Verification Methods to Ensure Robustness

δ

verified

unproven

violated

Formal Abstraction

(for classification) 
verifyNetworkRobustness 

(for regression)  
estimateNetworkOutputBounds
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Handling unseen data

What if the AI model receives inputs that it has never seen before?

Can we detect and flag outputs from out-of-distribution (OOD) data?

Inputs

“Output”

Detector

“OO !”

AI
Predictor

Provide Safety Guardrails for Handling Unseen Data

You should take a look at this
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Identify unknown examples to the model and reject or 

transfer to a human for safe handling

In-distribution 

Out-of-distribution 
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Integrate your AI model with Simulink with a Runtime Monitoring 

System
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DAL C System Architecture

Architectural Mitigation through dissimilar DAL D Components

Post-processing

&

comparison

Camera 

& 

pre-processing

DNN #1

DNN #2

DAL C 

Component

DAL C 

Component

DAL D Component

DAL D Component

System 

Output
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How to Achieve Dissimilarity?

Model Architecture

Data

ML Framework

Hardware

Common 

Mode Analysis

(ARP4761)

Software

Human

Independence
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Access AI models from other colleagues and the broader AI 

community​

Convert a 

Deep Learning 

TensorFlow / 

PyTorch / ONNX 

model

Coexecute a 

TensorFlow or 

PyTorch or any

Python model from

MATLAB

Interoperate with
3rd party 

framework

importNetworkFromTensorFlow
importNetworkFromPyTorch
importNetworkFromONNX
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Perspectives: Three-pronged approach to explain, verify, and test 

AI-driven systems 

White Box modeling Simulation & TestingAI Verification
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Deep Learning: Whole Network and Layer Blocks

Whole Network

White Box Modeling

… and many others

Layers of Network

- Visualization of the network
- Easy debugging
- Simulation: Continuous and discrete states
- C/C++ Code generation
- Simulink/Embedded Coder features for code customization 

and optimization
- AUTOSAR classic and adaptive
- Traceability of generated code
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How to interpret System Requirements as Network 

Constraints and enforce it in the learning process?

Example of Requirements:
1. Battery state-of-charge must increase in time as the battery charges
2. Steering angle change should not exceed a predefined rate (degrees per second) during automated lane correction
3. The aircraft airspeed must stay within operational limits to avoid structural damage (e.g., between minimum stall speed and maximum safe speed).

AI Verification

Guarantee mononotic

behaviour of the network

Ensure output stays within a 

specific range of values

Control how small changes in inputs 

affect the model’s outputs

Constrained deep learning is an advanced approach to train deep neural networks by 

incorporating domain-specific constraints

https://mathworks.com/matlabcentral/fileexchange/1

62651-ai-verification-constrained-deep-learning 

https://mathworks.com/matlabcentral/fileexchange/162651-ai-verification-constrained-deep-learning
https://mathworks.com/matlabcentral/fileexchange/162651-ai-verification-constrained-deep-learning
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Test AI-based systems with scenario-based testing 

Flight Controller Plant ModelInputs

Model-in-the-Loop
(MIL)

Host

PC

Host

PC

Host

PC

Software-in-the-Loop
(SIL)

Hardware-in-the-Loop
(HIL)

Scenario Simulation
Host

PC

Deploy on HardwareC++ EXE on Host PC

Ground Control Station

Simulation & Testing
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Key Takeaways

Some methods established, 

others in research; DAL C can 

be addressed today through 

Architectural Mitigation

Need to incorporate AI in 

production in safety-critical 

situations; Certification 

Standards are in progress

End-to-End Case Study to 

certify a DAL D Runway Sign 

Classifier Component

W ’   h       h      u                               

              h          L  ’      u     u     j    !
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