

8 octobre 2024 | Paris

Master Class : IA de confiance pour les systèmes critiques

Moubarak Gado, MathWorks

Application Engineer

MATLAB **EXPO**

As AI use rises in production, there is a growing need to explain, verify and validate model behavior in safety-critical situations

Challenges in Verification and Validation of AI-enabled Systems

Critical System Certification

Formal guarantee that the system meets **safety** and reliability standards

Software Certification standards

Ensure that the software development follows state-of-the-art processes

What do standards cover?

Verification & Validation: ensure systems meet requirements

Lifecycle management: from design to maintenance

Criticality classification: failure impact-based

Traceability & documentation & testing

Industries are making progress on verifying AI in systems through whitepapers, standards and planning

Automotive

$\leftarrow \mathsf{ICS} \leftarrow \mathsf{43} \leftarrow \mathsf{43.040} \leftarrow \mathsf{43.040.10}$

ISO/CD PAS 8800 Road Vehicles — Safety and artificial intelligence

Abstract

This document defines safety-related properties and risk factors impacting the insufficient performance and malfunctioning behaviour of Artificial Intelligence (AI) within a road vehicle context. It describes a framework that addresses all phases of the development and deployment lifecycle. This includes the derivation of suitable safety requirements on the function, considerations related to data quality and completeness, architectural measures for the control and mitigation of failures, tools used to support AI, verification and validation techniques as well as the evidence required to support an assurance argument for the overall safety of the system.

General information

Status : Under development

Edition : 1

Technical Committee : ISO/TC 22/SC 32 Electrical and electronic components and general system aspects

ICS : 43.040.10 Electrical and electronic equipment 43.040.15 Car informatics. On board computer systems

Aerospace

WIP 2023-06-26

Process Standard for Development and Certification/Approval of Aeronautical Safety-Related Products Implementing AI ARP6983

This document discusses guidelines for the development of Aircraft Systems leveraging AI capabilities, taking into account the overall aircraft operating environment and functions. This includes validation of requirements and verification of the design implementation for certification and product assurance and guidelines with the assessment of safety. It provides practices for showing compliance with the regulations and serves to assist a company in developing and meeting its own internal standards by considering the guidelines herein.

European Aviation Safety Agency Al Roadmap

Medical Devices

← <u>Software as a Medical Device (SaMD)</u>

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices

October 5, 2022 update: 178 Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices were added to the list below. With this update, the FDA has also added the ability to download the list as an Excel file.

Agenda

Al Certification in Airborne Systems: Overview

Certifying DAL D A Case Study: Runway Sign Classifier

Towards DAL C

Agenda

Al Certification in Airborne Systems: Overview

Certifying DAL D A Case Study: Runway Sign Classifier

Towards DAL C

Why Certifiable AI in Aviation?

<image><section-header>

Predictive maintenance

Single pilot operation

Autonomous flight

What is DO-178C?

DO-178C: Aviation software standard published by the Radio Technical Commission for Aeronautics (RTCA)

- Guidance for software design in aircraft, helicopters, UAVs, and spacecraft.
- Defines five software levels based on safety impact.

Level	Failure condition				
А	Catastrophic				
В	Hazardous				
С	Major				
D	Minor				
E	No Safety Effect				

Why is Machine Learning Certification a problem?

Several DO-178C objectives cannot be directly applied to software with a Machine Learning component.

How can we certify Machine Learning component against DO-178C?

How can we build trust in new verification methods for Machine Learning?

Industry and Regulators are making significant progress for Machine Learning Certification in Aerospace

MathWorks is playing an active role in working Group (EUROCAE WG-114 / SAE-34) for ARP6983

Established in 2019. Over 500 members

VIP 2023-06-26

Process Standard for Development and Certification/Approval of Aeronautical Safety-Related Products Implementing AI ARP6983

This document discusses guidelines for the development of Aircraft Systems leveraging AI capabilities, taking into account the overall aircraft operating environment and functions. This includes validation of requirements and verification of the design implementation for certification and product assurance and guidelines with the assessment of safety. It provides practices for showing compliance with the regulations and serves to assist a company in developing and meeting its own internal standards by considering the guidelines herein.

In progress Complementary to DO-178C Expected to be published

Traditional Software vs Machine Learning Systems

How big is the gap between Machine Learning and traditional software development?

Requirement: "Maintain altitude change within ±10 feets."

Can we certify Machine Learning now?

Step #1: **DAL D** ML Workflow

- Black-box approach
- Based on existing standards
 - DO-178C, ARP4754, DO-254

Step #2: **DAL C** ML Workflow

- Existing standards +
- Architectural mitigation
- ML-specific novel VnV

Incremental Certification Approach for Low-Criticality ML Systems*

Failure Category	Software Level (DAL)	DO-178C Objectives
Catastrophic	DALA	71 objectives30 require independence
Hazardous	DAL B	 69 objectives 18 require independence
Major	DAL C Step #2	62 objectives 5 require independence
Minor	DAL D Step #1	26 objectives 2 require independence
No Safety Effect	E	No required objectives

DAL D Black Box Approach

- DAL D: the origin of the source and object code does not matter
- Black-box verification satisfies all objectives

DO-178C Compliance Analysis

	DO-178C / DO-331 Objectives		Softw	vare I	evels		Analysis					
		A B C		C	CDE							
1	High-level requirements (HLR) are developed.	x	x	x	x		In the proposed ML workflow, a trained NN is provided from system level to software life cycle as <i>Design Model</i> , from which source code can be directly developed. In this case, as discussed in DO-331 MB.6.1.3, "the guidance related to high-level requirements should be applied to the requirements from which the model is developed." This objective can be achieved by developing system requirements specifying functional, operational, performance, and other applicable characteristics in traditional (e.g., textual) form using the applicable DO-178C guidelines for high-level requirements.					
2	Derived high-level requirements are defined and provided to the system processes, including the system safety assessment.	x	x	x	x		In the same manner as for the previous objectives, to achieve this objective, DO- 178C guidelines for derived high-level requirements can be applied to system level requirements (from which then ML model is developed) expressed in traditional form.					
3	Software architecture is devel- oped.	x	x	x	x		The software architecture defines the software components and their interfaces to enable appropriate grouping of the software functions. Given that a typical ML component (NN) is composed of simple sequential arithmetic operations, we assume that there is no need for an architectural breakdown of the ML function and it can be arranged as a single ML component. However, this objective still applies to traditional software components, which integrate with ML component and can be achieved using the applicable DO-178C guidelines for software architecture.					
4	Low-level Requirements are de- veloped.	x	x	x			This objective does not apply to Level D and is excluded from the analysis.					
5	Derived low-level requirements are defined and provided to the system processes, including the system safety assessment.	x	x	x			This objective does not apply to Level D and is excluded from the analysis.					
6	Source Code is developed	X	X	X			This objective does not apply to Level D and is excluded from the analysis.					
7	Executable Object Code and Pa- rameter Data Item (PDI) Files, if any, are produced and loaded in the target computer.	x	x	x	x		Activities for production and loading of executable object code and PDI files are not different between traditional software and ML components, DO-178C guidelines can be directly applied to achieve this objective.					

W-shaped development process adapting the classical V-shaped cycle to ML applications

Source: EASA Concept Paper Proposed ISSUE 02 'First usable guidance for Level 1&2 machine learning applications

W-shaped development process can coexist with V-shaped cycle for non-ML components

Source: EASA Concept Paper Proposed ISSUE 02 'First usable guidance for Level 1&2 machine learning applications

Agenda

Al Certification in Airborne Systems: Overview

Certifying DAL D A Case Study: Runway Sign Classifier

Towards DAL C

Case Study Runway Sign Classifier: Certify an Airborne Deep Learning System

Case Study

Runway Sign Classifier: Certify an Airborne Deep Learning System

Deep Learning Toolbox Example

DO Qualification Kit Example

Help Center	Search Help Q								
CONTENTS	Documentation Functions Apps								
« Documentation Home	Runway Sign Classifier: Certify an Airborne Deen Learning System								
« Code Generation « Aerospace « DO Qualification Kit « Get Started	This example shows how to approach the certification of machine learning (ML) systems that must comply with aviation industry standards, such as Do-178C and ARP-475A. The example uses the custom ML workflow that Open Project								
	utilizes the MathWorks toolchain and includes the development and verification activities called out by DO-178C, ARP4754A, and prospective EASA and FAA guidelines. The analysis of compliance to these documents is also included in this example.								
Runway Sign Classifier: Certify an	Execute Activities by Using Live Scripts in MATLAB								
Airborne Deep Learning System ON THIS PAGE Execute Activities by Using Live Scripts in MATLAB	The example is comprised of a project that includes artifacts, requirements, data sets, tests, and pregenerated results that are relevant to the certification of an airborne machine learning system. When you open the example, the project automatically opens that Runway Sign Classifier. Certify an Athorne Deep Learning System live editor file (index mix). Use the executable hyperlinks in the script to perform the workflow activities, it is necessary to nun the live scripts in a product(s) that are required to perform an activity and generate results. To successfully execute the workflow activities, it is necessary to nun the live scripts in to order as outlined in index.mix. This is important as the results generated from each script are utilized in the subsequent activities.								
	To automate the execution of the activities, in the Live Editor tab, select Run. As the scripts run, MATLAB:								
	- Writes progress status, results, and errors to the live editor file.								
	- Generates results and saves them to the project. Use the Modified project view to identify files that are added to the project.								
يوجو المستوجة المحسبي	Note that the project includes pregenerated results. When a MathWorks product is not available, use the hyperlinks in the live editor script to open the regent report								

6. Data Preparation

Case Study

Runway Sign Classifier: Certify an Airborne Deep Learning System

Define system requirements and allocate them to the AI constituent

	REQUIREMENTS													
	New Open Requirement Set	Import ↓ <th>Coad Profile Editor</th> <th>Add E Pro Requirement - E De</th> <th>Delete Promote Requirement Demote Requirement Link - © Preferences LINK - UNKS</th>	Coad Profile Editor	Add E Pro Requirement - E De	Delete Promote Requirement Demote Requirement Link - © Preferences LINK - UNKS									
					⑦ ▼Properties									
	Index ▼ 🖫 RSC_SYS ▼ 🗐 1	ID #1 F	Summa Runway Sign Classifier Sys	ry stem Requirements	Type: Informational Index: 1.2 Custom ID: #3									
	■ 1.1	#2 li #3 S	ntroduction System Description		Summary: System Description									
	▼ ≣ 1.3	#4 S	system Functional Require	ements	Description Rationale									
	≣ 1.3.1	#5 S	igns Detection											
(Sub)system	≣ 1.3.2	#36 S	igns Classification		BSC is a pilot assistance system intended for detection and classification of airport sions. BSC cantures visual information using a forward-facing camera on the aircraft and uses a Deep Neural									
requirements	≣ 1.3.3	#23 D	Detection latency		Network (DNN) for detection and classification of airport signs. RSC helps to increase the awareness of the pilot towards the runway markers and assigned with design assurance level D.									
Que de sérve	≣ 1.3.4	#25 D	Detection precision											
& design	▼ 🖹 1.4	#27 S	system Operational Doma	in Requirements										
	≣ 1.4.1	#28 A	Airports		Vele Bounding Content Sign									
	1.4.2	#20 L	ight conditions		Scaling 128x128									
Requirements	≣ 1.4.3	#21 C	Distance		Camera DNN Camera									
allocated to	≣ 1.4.4	#30 V	Veather conditions											
	≣ 1.4.5	#22 H	lorizontal angle of view											
Al/IVIL	≣ 1.4.6	#34 V	ertical angle of view											
constituent	≣ 1.4.7	#35 S	Sign rotation											
	and the state				with a second									

Define system requirements and allocate them to the AI constituent

System

	Summary	ID	ndex	
			C_SYS	RSC
	Runway Sign Classifier System Requirements	#1	1	E
	Introduction	#2	1.1	
	System Description	#3	1.2	
	System Functional Requirements	#4	1.3	-
	Signs Detection	#5	≣ 1.3.1	
ML Component	Signs Classification	#36	≣ 1.3.2	
	Detection latency	#23	1.3.3	
	Detection precision	#25	≣ 1.3.4	
	System Operational Domain Requirements	#27	1.4	▼
	Airports	#28	≣ 1.4.1	
	Light conditions	#20	≣ 1.4.2	
D.4.	Distance	#21	≣ 1.4.3	
Data	Weather conditions	#30	1.4.4	
	Horizontal angle of view	#22	≣ 1.4.5	
	Vertical angle of view	#34	≣ 1.4.6	
	Sign rotation	#35	≣ 1.4.7	l
	Justifications	#37	2	

MATLAB **EXPO**

Requirements Toolbox allows you link system requirements to data requirements

(Sub requi &

			6	▼ Proper	ties				
	Index ID Summary ▼ ■ RSC_SYS ▼ ■ ▼ ■ 1 #1 Runway Sign Classifier System Requirements		Type: Index:	Functional • 1.4.4					
	 ■ 1.1 ■ 1.2 ■ 1.3 ■ 1.3.1 	#2 #3 #4 #5	Introduction System Description System Functional Requirements Signs Detection	Custom II Summary Descript	2: #30 Weather conditions		D 7 11		
	 ■ 1.3.2 ■ 1.3.3 ■ 1.3.4 ■ 1.4 ■ 1.4.1 ■ 1.4.2 	#36 #23 #25 #27 #28 #20	Signs Classification Detection latency Detection precision System Operational Domain Requirements Airports Light conditions	The RSC within the	n Sans shall operate in all expect operational distance rang	ed weather condition e.	s when it is pos	sible to see and identify signs	
ystem	 □ 1.4.3 □ 1.4.4 □ 1.4.5 □ 1.4.6 	#21 #30 #22 #34	Distance Weather conditions Horizontal angle of view Vertical angle of view	Keywords	:	Index 1.1 1.2	ID #2 #4	Summary Introduction DNN requirements	Properties Type: Functional ∨ Index: 1.2.4 Custom ID: FAIR
sign	■ 1.4.7 ► ② 2 ► ■ RSC_CMP ▼ ■ RCS_DATA	#35 #37	Justifications	► Revisio	n information:	> 2 • RCS_DATA • 1 1.1	#42 #1 #2	Justifications RSC DNN Data Requirements Introduction	Summary: FAIR weather condition Description Rationale Arial v 10 B I U E = = = v a
Requirements allocated to AI/ML	▼ ■ 1 ■ 1.1 ▼ ■ 1.2 ■ 1.2.1	#1 #2 #4 KSFO	RSC DNN Data Requirements Introduction ML Data Requirements KSF0 airport		plemented by: OG weather condition NOW weather condition AIN weather condition AIR weather condition	 ▶ 1.2 ▶ 1.2.1 ▶ 1.2.2 ▶ 1.2.3 ▶ 1.2.4 	#4 KSFO KBOS KSAN FAIR	ML Data Requirements KSFO airport KBOS airport KSAN airport FAIR weather condition	The dataset shall include the images captured in PAIR weather condition
constituent	■ 1.2.2■ 1.2.3■ 1.2.4	KSAN FAIR	KBOS airport KSAN airport FAIR weather condition	□ ← Ve ² 7	rified by: 39072.857.1 in dataTestin	g 1.2.5 ⇒ 1.2.6 ⇒ 1.2.7 ⇒ 1.2.8 ⇒ 1.2.9	KAIN SNOW FOG MRNG DUSK	NALIV Weather Condition SNOW weather condition FOG weather condition MORNING time of the day DUSK time of the day	Keywords: Revision information:
Rockiewi worksie worksiewi worksiewi						 i.2.10 i.2.11 i.2.12 1.2.13 1.2.14 	AFTN DAWN DIST ROT AGL	AFTERNOON time of the day DAWN time of the day Sign distance Sign rotation Elevation above ground level	✓ Links G ← Implemented by:
Harding Hardin						> 2	SIDE #28	Lateral offset Justifications	Image: Weather conditions Image: Heather conditions

Map data requirements to your MATLAB data and review data in Image Labeler App

Data Requirement ID	Datastore	Datastore Size	Datastore Link
{'KSF0'}	{1×1 matlab.io.datastore.ImageDatastore}	72	{["Open Datastore"]}
{ 'KBOS ' }	<pre>{1×1 matlab.io.datastore.ImageDatastore}</pre>	108	{["Open Datastore"]}
{ 'KSAN ' }	{1×1 matlab.io.datastore.ImageDatastore}	24	{["Open Datastore"]}
{'FAIR'}	{1×1 matlab.io.datastore.ImageDatastore}	114	{["Open Datastore"]}
{'RAIN'}	{1×1 matlab.io.datastore.ImageDatastore}	54	{["Open Datastore"]}
{ 'SNOW ' }	{1×1 matlab.io.datastore.ImageDatastore}	24	{["Open Datastore"]}
{'FOG' }	{1×1 matlab.io.datastore.ImageDatastore}	48	{["Open Datastore"]}
{ 'MRNG ' }	{1×1 matlab.io.datastore.ImageDatastore}	78	{["Open Datastore"]}
{'DUSK'}	{1×1 matlab.io.datastore.ImageDatastore}	72	{["Open Datastore"]}
{'AFTN'}	{1×1 matlab.io.datastore.ImageDatastore}	36	{["Open Datastore"]}
{ ' DAWN ' }	{1×1 matlab.io.datastore.ImageDatastore}	90	{["Open Datastore"]}
{'DIST'}	<pre>{1×1 matlab.io.datastore.ImageDatastore}</pre>	276	{["Open Datastore"]}
{ 'AGL' }	<pre>{1×1 matlab.io.datastore.ImageDatastore}</pre>	276	{["Open Datastore"]}
{'SIDE'}	{1×1 matlab.io.datastore.ImageDatastore}	276	{["Open Datastore"]}
{'ROT' }	{0×0 double }	0	{0×0 double }

Al/ML constituent Data management

Requirements

allocated to

Requirement

non-ML item

allocated to

Hyperlinks open the datastores ready to view in the Image Labeler App for review

Image Labeler

Map data requirements to your MATLAB data and review data in Image Labeler App

Compute data coverage per data requirement

Review Data Correctness

Dataset Percentage Correctness = 99.6377%

Data Augmentation

Add variety without extra samples

Examples:

Rotation Flipping Translation Noise injection

Color jitter augmentation in HSV space

Random scaling by 50 percent

Increase productivity using Apps for design and analysis

Machine Learning Apps Train machine Learning Models

Deep Network Designer Build, visualize, and edit deep learning networks

Reinforcement Learning Designer

Design, train, and simulate agents for existing environments

Reduced Order Modeler App

Create and train data-driven ROM of subsystems (including those with high-fidelity 3rd party tools)

Run multiple experiments, analyze and compare results, optimize your AI model

Manage, train and verify the learning process

Iterate faster with productivity apps

in Castler		a rorry rower	1990-012-024	Card See 34	a bras species						Corners.				
Baurine Establishment	· Fares	Freud Details													
C Seeing Index Lawring Rate	thanst	Bauetra Turing 24/0125 #3500 PM													
El handing future						Complete III		A Monet	1	H	821				
Theory Country Nam Tory Non and Don Tory IV						, were a		is these		20001 27	500	1.000			
Attr Coro-Batch Rel a Banks											1				
Tary Filer Sze of First ConciD Laws	Trie	Shatua	Program		Elanat Time	monthshawn.	and iterlies	Trabinages?	Transmis Accord	Training Loose	2.				
TT can reserve the prov	88	A Longer	-	-	Concernent Channel						11				
	14	Complete		-	Distant Mass			1000 000.	auna		1.000	and the state			
	43	O Complete		10.05	UNLINE U.M.	0.000			31.425						
	41	Corpies	_		C Division Cases	0.0001		1966 1966.	4490 72-814						
	42	G Lorgins	_	100.01	C Division (7 per			1996 1997.	2010 25.5471		500-000	1600.5			
	40	Coruste .	_	-	Conclusion have			1999 - 1999.	ADDA PE.T141						
	45	Cortaines			Contraction			188.							
	46	Complete			Division Name	0.0001		100.	2000 TL.0934		+E				
	47	Q Running		10.05	2. 10 2 mit 10 and	0.000	0	1004 104.	2010 C		28				
	VIII.ML	DATION &									[3]羽 _				
				2000	First (True of . Taxata	Learning Bate Care 1	tion and Data for	at Desette Tering			58 _				
											100				
	3						~~~			~~~~	111	2121			
	8.00		-								Turing	Amarany (%			
	1	and a				Front S		Erest #	Encold St.						
		and the second se			A 100	allow a	140	albohu a	200	250	04.8438	84.531			
						herditor									
	1.5			12030	14100000000										
	311	poch 1		Eports 2		Linco 1		Eporte	Fand 9	-	. 23				
	.0		50		100	(access)	190		200	250	2-				
						. Sector					3-1				
										2	112220 227	- 63			

Accelerate model training with GPUs and the cloud

Learning

process

management

Manage, train and verify the learning process

Manage, train and verify the learning process

The ideal model delivers precision 1 at all recall levels.

YOLO V3 meets the required average precision per class of at least 95%.

Deploy to targets

📣 MathWorks[®]

Deep Learning C/C++ Code Generation

Flexible library deployment for a given model

>> analyzeNetworkForCodegen(yolov3Detector.Network)

Supported "Voc" ...

none	"Yes"
arm-compute	"Yes"
mkldnn	"Yes"
cudnn	"Yes"
tensorrt	"Yes"

How to optimized performance in hardware constrained environment?

Model Compression

Model Compression

Analyze network for Compression

- Maximum possible memory reduction
- Pruning and projection support
- Ability to prune individual layers
- Layer memory

>>deepNetworkDesigner(yolov3Detector.Network)

Quantization, compression and code generation

Inference model verification & integration Model implementation

Quantization, compression and code generation

Generate int8 CUDA Code

After you train and evaluate the detector, you can generate CUDA code using GPU Coder software. For more details, see Generate INT8 Code for Deep Learning Networks.

cfg = coder.gpuConfig("mex"); cfg.TargetLang = "C++";

Check the computing capability of the GPU.

```
gpuInfo = gpuDevice;
cc = gpuInfo.ComputeCapability;
```

Create a deep learning code generation configuration object.

```
cfg.DeepLearningConfig = coder.DeepLearningConfig("cudnn");
```


Set DataType to "int8" and set the CalibrationResultFile property. int8 precision requires a CUDA GPU with a minimum computing capability of 6.1, 6.3, or higher.

```
cfg.GpuConfig.ComputeCapability = cc;
cfg.DeepLearningConfig.DataType = "int8";
cfg.DeepLearningConfig.CalibrationResultFile = "dlquantObj.mat";
```

Generate CUDA code by using the codegen function. You can view the resulting code generation report by clicking **View Report** under the codegen function call after you run this section. The report opens in the Report Viewer window. If the code generator detects errors or warnings during code generation, the report describes the issues and provides links to the problematic MATLAB code. For more information, see Code Generation Reports.

```
inputSize = [128 128 3];
X = ones(inputSize,"uint8");
codegen -config cfg coderDetect -args {X} -o gpuDetect -d gpucodegen -report
```

Code generation successful: View report

Integrate your AI model with Simulink

Requirements Verification through testing

equirements verification Independent data and learning verification	AI/ML constituent requirements verification
Remeries Barrier Barri	

Establish Traceability between Requirements, Design, and Tests

> 🕑 2		#37	Justifications	
RSC_0	СМР			
✓ ■ 1		#1	RSC DNN Component Requirements	This section provides requirements for the RSC DNN component.
Ē	1.1	#2	Introduction	
× 🗉	1.2	#4	DNN requirements	
	1.2.1	#5	DNN input	
	1.2.2	#23	DNN operation	
	1.2.3	#19	DNN output	
	1.2.4	#24	DNN latency	
	1.2.5	#25	DNN precision	
> 🕑 2		#42	Justifications	
RCS_E	DATA			
✓ ■ 1		#1	RSC DNN Data Requirements	
	1.1	#2	Introduction	
~	1.2	#4	ML Data Requirements	
	1.2.1	KSFO	KSFO airport	
	1.2.2	KBOS	KBOS airport	
	1.2.3	KSAN	KSAN airport	
	1.2.4	FAIR	FAIR weather condition	
	1.2.5	RAIN	RAIN weather condition	
	1.2.6	SNOW	SNOW weather condition	
	1.2.7	FOG	FOG weather condition	
	1.2.8	MRNG	MORNING time of the day	
	1.2.9	DUSK	DUSK time of the day	
	1.2.10	AFTN	AFTERNOON time of the day	Keywords:
	1.2.11	DAWN	DAWN time of the day	Revision information:
	1.2.12	DIST	Sign distance	
	1.2.13	ROT	Sign rotation	
	1.2.14	AGL	Elevation above ground level	Passed: 0, Justified: 0, Failed: 1, Unexecuted: 0, None: 0, Total: 1
	1.2.15	SIDE	Lateral offset	
> 🕑 2		#28	Justifications	
				► Comments

Agenda

Al Certification n Airborne Systems: Overview

Certifying DAL D A Case Study: Runway Sign Classifier

Towards DAL C

DAL-C Certification requires a deeper understanding of your AI model

Verification and Validation for Deep Neural Networks

Use Formal Verification Methods to Ensure Robustness

Deep Learning Toolbox Verification Library by MathWorks Deep Learning Toolbox Team STAFF Verify and test robustness of deep learning networks https://www.mathworks.com/help/deeplearning/verification.html

Provide Safety Guardrails for Handling Unseen Data

Verify robustness of deep learning networks

Use Formal Verification Methods to Ensure Robustness

Handling unseen data

What if the AI model receives inputs that it has never seen before?

Can we detect and flag outputs from out-of-distribution (OOD) data?

Identify unknown examples to the model and reject or transfer to a human for safe handling

Integrate your AI model with Simulink with a Runtime Monitoring System

Inference model verification &

integration

Model

implementation

Architectural Mitigation through dissimilar DAL D Components

How to Achieve Dissimilarity?

Access AI models from other colleagues and the broader AI community

Perspectives: Three-pronged approach to explain, verify, and test AI-driven systems

- 1. Battery state-of-charge must *increase in time* as the *battery charges*
- 2. Steering <u>angle change should not exceed</u> a predefined rate (degrees per second) during automated lane correction
- 3. The aircraft airspeed must stay within operational limits to avoid structural damage (e.g., between minimum stall speed and maximum safe speed).

📣 MathWorks[®]

Test AI-based systems with scenario-based testing

MathWorks[®]

Simulation & Testing

Key Takeaways

Need to incorporate AI in production in safety-critical situations; Certification Standards are in progress

End-to-End Case Study to certify a DAL D Runway Sign Classifier Component

Some methods established, others in research; DAL C can be addressed today through Architectural Mitigation

We're here to help you navigate AI certification and verification challenges. Let's discuss your projects!

Merci!

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

