

Towards Zero-Emission Shipping -with Fuel Cells and Model-Based Design

Clara

Problem:

No viable clean power solution for **deep-sea*** shipping

*90% of global fleet

Total annual greenhouse gages emissions from international shipping to be reduced with at least 50% by 2050 compared to 2008

What is a Solid Oxide Fuel Cell (SOFC)?

Oxygen Air

- High temperature (700 800 C) allows for internal cracking or reformation
- Available heat at high temperature (high value)
- High efficiency of electricity generation

SOFC solve the two main challenges related to decarbonization

COMPATIBLE WITH **FUTURE DEEP-SEA FUELS**

FUEL

Hydrogen

Future deep-sea fuels Methanol, Ammonia

Transition fuels LNG, LPG

Traditional fuels Diesel, VLSFO

Fuel cells

 \checkmark

TECHNOLOGY

ICE

SOFC PEM

MULTIPLE **OTHER BENEFITS**

Low maintenance with no moving parts

Silent and no vibrations

Modularity enables new ship design possibilities

Carbon capture potential (high CO₂ concentration)

In-house early-stage venture lab

Clara Venture Labs in brief

Established >30 years ago, Clara Venture Labs is a venture lab delivering technology innovation, R&D projects, and venture support services

Impressive track record of **building breakthrough** technology ventures from discoveries in the lab, including carbon capture, hydrogen production, and fuel cell technology solutions

Systematically developing new **innovations** in partnership with Atoma Capital and leading institutions

>3,600 m² of laboratories and testing facilities

Materials Characterization Lab

Lab Scale Experimentation Facility

Manufacturing Facilities

Thermodynamics

py.CoolProp.CoolProp.PropsSI('C','T',373,'P',101325,'Water')

coder.extrinsic('py.CoolProp.CoolProp.PropsSI')

1300 6000.
85.81217
11.26467
-2.114146
0.138190
-26.42221
-153.5327
224.4143
-74.87310
Chase, 1998
ewed in March, 1961

Fuel cell - Thermodynamics

Venture Labs

Exothermic

	_
NH3	
—— N2	
O2	
——————————————————————————————————————	
CO2	
CO	
—— H2O	
	-
	_
	_
	15
	-

Fuel cell - Electrochemistry

 $E_{\Omega} =$

$$E_{tot} = E_{rev} - E_{\Omega} - E_{cons} - E_{act}$$

$$E_{rev} = \frac{\Delta G_0}{4F} - \frac{TR}{4F} \cdot \ln\left(\frac{p_{H_2O}^2}{p_{H_2}^2 \cdot p_{O_2}}\right)$$

$$\frac{I}{area} \cdot \left(ASR_{Tref} \cdot \exp\left(1.08 \cdot \frac{F}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right) + ASR_{time}\right)$$

$$E_{cons} = -\frac{RT}{zF} \ln\left(1 - \frac{I}{I_L}\right)$$

 $E_{act} = a \cdot log(I) + b$

Fuel cell - Measurements

 $Power = eletric \ current \cdot potential$

All other energy is transformed to thermal energy.

Hence you can find the temperature of the fuel and air out from your fuel cell.

Data flow

Block Parameters: Bus Selector1

BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output using a bus object. The left listbox shows the elements in the input bus. Use the Select button to select the output elements. The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check 'Output as virtual bus' to output a single bus.

Parameters				
Filter by name	3	Find	Selected elements	Up
Elements in the bus	;	Select>>	temp	Dowr
pres temp NH3 H2 CO2 N2		Refresh	Output as virtual bus	Remov
ct f1in f1out input output hex_struct f2in f2out hex2	f2in hex2	f2out	OK Cancel H	lelp Appl

Different utilisation of MATLAB/Simulink though projects

Example of modelling in the start and end of a project

If T_{out}^{hot} is set, you know how much heat the cold fluid gets if we assume no losses:

 $\mathbf{Q} = \Delta H \cdot mass = (\Delta H_{out} - \Delta H_{in}) \cdot mass$

And you can calculate T_{out}^{cold} $T_{out}^{cold} = T_{in}^{cold} - \frac{Q}{c_p^{cold} \cdot mass}$ **Clara**

Venture Labs

$$Q = \epsilon \cdot C_{min} (T_{fuel} - T_{water})$$

$$\epsilon = \frac{1 - exp(-N \cdot (1 - C))}{1 - C \cdot exp(-N(1 - C))}$$
[W/K]
Dependent
- area
- area
- material

$$T_{out}^{fuel} = T_{in}^{fuel} - \frac{Q}{c_p^{fuel} \cdot mass}$$

Additional work

- Make our own Gas mixture
- Include their thermodynamic properties
- Calculations of reaction rates

- Large system with many people with
 - different areas of expertise
- Important to be able to test new code with code written by other experts

Azure DevOps

Git

Custom Libraries

What have we gotten out from our MATLAB/Simulink models?

- 1. Prediction: Give new investors and customers good estimates of future systems efferences, fuel utilization and available heat
- 2. Techno-economic insights for downsizing components and selecting commercial off-the-shelf (COTS) products
- 3. Simplified component manufacturing by setting mass flow, pressure, and temperature early on in the project.
- 4. Leveraging value in test data: Learn from lab tests, implement the data in our models for improvement to the next model

Thank you for your attention

Alma

30+ years fuel cell experience

Competent and capable organization

Platform backed by Aker and ICP

Maritime DNA

Future proof technology

