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KEY TAKEAWAYS
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This presentation will emphasize on the following topics:

❑ Usage of AI in Matlab to solve real time prediction of temperatures :

▪ Problem of non linearity

▪ Problem of load history dependence

▪ Compare the AIs

❑ Explore Model Based AI through the Extended Kalman Filters example : Benefits and Drawbacks

❑ Explore some Neural Network AI to overcome EKF difficulties : Benefits and Drawbacks
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ENERGY CONVERSION & HEAT GENERATION

Challenge : Develop an AI to predict temperatures for embedded applications

Model
𝑆𝑝𝑒𝑒𝑑/Flow

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑂𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑀𝑜𝑡𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠

Temperature variation : a result of heat generation
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TEMPERATURE EVOLUTION : A LOAD HISTORY DEPENDENT & NON LINEAR PROBLEM

Input Flux = Output Flux

1 mesh → 1 equation

1 mesh → 1 temperature

Method : 

- Discretization of the system into nodes

- Solve the heat balance equation for each node

Difficulties :

❑ Find the right level of details

❑ Embed the solver ?

Mostly solved by the Nodal Method

Non linear coefficients

Nodal Method or Thermal Network 
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FACTORS OF INFLUENCE

Hydraulic Power / internal 

losses
History and time at level Exogeneous

• High Pressure

• Low Pressure

• Speed

• Displacement 

• […]

Temperature evolution : A load history dependent & non linear Problem

• Tank/Inlet 

Temperature 

• External Temperature 

• Flushing flow

• […]

• Duration of time at level

• History of thermal loads

• […]
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Temperature Soft Sensing with Kalman 

Filters
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SOFT SENSING WITH KALMAN FILTERS

Filling

Tank

Flushing

Input flow Inlet

flow

Leakages

flow

Outlet

flow

Motor speed

Oil evacuation

Drain Port

Extended Kalman Filter
Complete Model

Nodal method + coefficients from test & simulation

Temperature Prediction

Embedded applications

Target : Real-time prediction with Model Based AI

Load a Duty Cycle
➔ Pressure, Speed, Tank Tempreature…

AI
Predict Motor Temperatures

Generate Temperatures Decision
Limit the available power
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EXTENDED KALMAN FILTERS STEPS

Model Reduction (Embedded Purpose)

𝑋 =

𝑇1 = 𝑥1
𝑇2 = 𝑥2

⋮
𝑇𝑖
⋮

𝑇𝑘 = 𝑥𝑘

𝑋 =

𝑇1 = 𝑥1
𝑇2 = 𝑥2

⋮
𝑇7 = 𝑥7

FROM 

Computation with implicit form to Retrieve the function 𝒇: (𝑿𝒌; 𝑼𝒌 ; 𝒘) → 𝑿𝒌+𝟏

𝑋𝑘+1 =

𝑇1
𝑘+1 = 𝑇1

𝑘 + 𝑇𝑠 … + 𝑈1
𝑘

𝑇2
𝑘+1 = 𝑇2

𝑘 + 𝑇𝑠 … + 𝑈2
𝑘

⋮

𝑇7
𝑘+1 = 𝑇7

𝑘 + 𝑇𝑠 … + 𝑈7
𝑘

Deploy Kalman Filter

Process simplification, linearisation and deployment

To
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EKF RESULTS

Evaluate the EKF 

(RMSE and size compatibility with the 

embedded hardware):

RMSE ~10°C

RMSE [°C] Size [KB]

10 30

*over 100 hrs of concatenated validation data
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EXTENDED KALMAN FILTERS

❑ Widely available publications

❑ System Engineering State of the Art

❑ Bayesian Filter : mixes a model based 

prediction with measurements. Benefits 

from both worlds : 

▪ model simplification

▪ prediction of data not 

measurable

▪ increased accuracy

▪ […]

A Model Based primitive AI

Initial State :

𝑋𝑂
𝑃𝑂

Previous State Estimated :

𝑋𝑘−1

𝑃𝑘−1

Prediction :

𝑋𝑘
− = 𝑓(𝑋𝑘−1 ; 𝑈𝑘−1 ; 𝑄)

𝑃𝑘
− = 𝐴𝑘−1 .𝑃𝑘−1. 𝐴𝑘−1

𝑇 +𝑊𝑘−1. 𝑄.𝑊𝑘−1
𝑇

Update :

𝐾𝑘 = 𝑃𝑘
−. 𝐻𝑘

𝑇 . [𝐻𝑘 . 𝑃𝑘
−. 𝐻𝑘

𝑇 + 𝑉𝑘 . 𝑅. 𝑉𝑘
𝑇]−1

𝑋𝑘 = 𝑋𝑘
− + 𝐾𝑘 .(𝑍𝑘- 𝐻𝑘 . 𝑋𝑘

−)

𝑃𝑘 = 𝐼𝑑 − 𝐾𝑘 . 𝐻𝑘 . 𝑃𝑘
−

Measurement : 

𝑍𝑘 = 𝐻𝑘 . 𝑋𝑘 + 𝑅

L
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 t
h
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u

g
h

 t
h
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ig
n
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l 
le

n
g

th

❑ Can be Computationally Intensive

❑ Precision dependent on the model complexity

❑ Requires deep understanding of Process & Noise 

Covariance matrix

❑ Industrialization hard if thermal resistance are not 

properly calculated

𝐴 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥3

⋮ ⋱ ⋮
𝜕𝑓3
𝜕𝑥1

⋯
𝜕𝑓3
𝜕𝑥3
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Temperature Soft Sensing with Deep 

Learning
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Filling

Tank

Flushing

Input flow Inlet

flow

Leakages

flow

Outlet

flow

Motor speed

Oil evacuation

Drain Port

AI
Long short-term memory (LSTM)

Feed Forward Neural Network (FFNN)

Complete Model
Nodal method + coefficients from test & simulation

Temperature Prediction

Embedded applications

Target : Real-time prediction with NN

Load a Duty Cycle
➔ Pressure, Speed, Tank Tempreature…

AI
Predict Motor Temperatures

Generate Temperatures Decision
Limit the available power

SOFT SENSING WITH DEEP LEARNING
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AI INDUSTRIALISATION GENERAL PROCESS

Key Steps for AI Industrialisation
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TRAINING THE AI : DATA GENERATION

DOE

Parameters of 

Influence

Simulate Usage Profiles 
Program a Data Generator

Retrieve Inputs and Outputs
Assess the temperatures 

and thermal Resistances

Key Steps for Data Generation with few Data available
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PREPARATION & RESAMPLING

Select a new set of parameters

Save all files

R
e
p

e
a
t 

F
o

r 
e
a
c
h

 P
a
ra

m
e
te

r

Creation of N Randomized set of Data : 

• HP : min to max Pressure

• Speed : min to max Speed

• Tank : min to max Tank temperature

Organise, Randomize and Resample the Data
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AI CHOICES

BENEFITS AND DRAWBACKS

• Code Industrialization :  C code, ECU, 

compressed models…

• Train on large datasets for robustness

• Model and results Interpretability? Not 

necessarily an issue

AI CHOICE : Preliminary tests lead to :

• LSTM Neural Network

• Feed Forward Neural Network

• Other AIs : 

• NAR(X)Neural Network

• Machine Learning + Feature Engineering + 

Buffer

• […]

REQUIREMENTS

• Solve Non Linearities

• Memory for Inputs Data

• Inputs through buffers

• Physics of failure knowledge

• Predict temperatures based on different 

machine dynamics : low / medium / high . 

Other AIsFFNN
LSTM

Selecting AIs for solving the thermal prediction
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TRAIN & TEST THE AI

Adjust training parameters and NN structure to achieve efficient convergence
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VALIDATE THE MODEL

7°C<RMSE<11°C

RMSE [°C] Size [KB]

Data Generation

+ Training 

Duration [Days]

LSTM 7 - 11 110 - 130 8

FFNN 9 - 11 80 - 120 8
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APPLICATION ON TEST MONITORING

Creation of an App in Matlab for Test Temperature Monitoring: 

❑ Real time predictions on sequences of data

❑ Multiple AI available

❑ Available for different motors

AI Industrialisation
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CONCLUSIONS

Parameter \ AI EKF

FFNN
2 hidden layers

Artificial memory through Moving Mean

LSTM
1 hidden layer

Training Complexity & Duration N/A

Prediction Risk Evaluation

Size

Accuracy (RMSE)

Interpretability

Industrialisation

Pros & Cons of AI for thermal predictions



Continuing with the study

PROJECT NEXT STEPS

❑ Improve the time to generate data

❑ Implement the AI on testing machines for additionnal feedback. 

Test the algorithms with dedicated softwares/hardwares. 

❑ Work with system & application engineers to deploy connected

packages of real time thermal predictions. Allow or limit power. 

22
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THANK YOU FOR YOUR SUPPORT MATHWORKS TEAM !

Consulting

Training

Application engineering
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Thank You ! 

Questions



THANK YOU

Route de Compiègne - 60410 Verberie
France

Tél. : +33 3 44 40 77 77
Fax. : +33 3 44 40 77 91

www.poclain.com
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