

Standardized NPSS Propulsion Model integration into Simulink process using FMI

MATLAB EXPO 2023

Keith Pattison, Associate Fellow Propulsion Modeling and Simulation Lockheed Martin Aeronautics – Fort Worth Tx

Public Information Release Authorization (PIRA) AER2023020038

LOCKHEED MARTI

Lockheed Martin Aeronautics: Supporting Legacy Aircraft and ADP: Advanced Development Programs

Introduction

- Integrated Flight and Propulsion Controls has become much more important as aircraft systems become more complex.
- NPSS is a NASA/Industry developed tool that provides an object orientated simulation environment for propulsion performance modeling.

- Utilization of High-Fidelity plant and engine control models, from our suppliers, packaged in NPSS environment is standard practice on almost all Lockheed Martin programs.
- NPSS Engine models are full physics plant model of the engine system, coupled with a representative Engine Control model FADEC(Full Authority Digital Engine Control) to provide installed engine flight performance through out the flight envelope.
- Engine Simulations are utilized at all stages program development from Conceptual design to end of life. They are frequently updated as the program matures, or the control logic is updated.

Engine Models are Constantly being utilized and updated

Background

- Legacy Engine model integration used to be done on a case by case basis with custom interface code developed for each program.
- Usually needed custom interfacing software (Middleware) to hook into Commercial tools like MATLAB/Simulink
- Over the last 10 years utilized Simulink with legacy interface with numerous issues. Required a number of tools to be aligned, NPSS version, Compilers, MATLAB versions. Many stability issues in the interface resulting in numerous hours of trouble shooting.
- FMI / FMU approach removes the middleware layer support from the model interface and places it on the host tool to accommodate.

© 2023 Lockheed Martin Corporation, All Rights Reserved

FMI / FMU approach saves integration time and provides more system stability and common interface to many tools

NPSS FMU Export Development & implementation challenges

- In 2022 Lockheed Martin worked with the NPSS Consortium development team to test and refine the FMI version 2 FMU export capability. Lockheed Martin also worked with MathWorks SMEs to evaluate the Simulink interface to the new NPSS FMUs to develop several features of the NPSS FMUs
- NPSS will have FMI 2 (CS & ME) import/export capabilities in upcoming version 3.3 being released later this year.
 - Released as EMI version 15.0 as part of the 3.3 commercial release
 - Most features shown in this presentation available.
- For NPSS model Export Currently using a Python3 script to package an NPSS model into an FMU, it uses standard python packages with no dependencies. Desire was to have a simple wrapping process without any other tool or package dependencies.
- Take advantage of FMU Multi OS Capability with Windows/Linux
- Eliminate Software compilation as part of the wrapping process.
- Build Interface to be real time fast, no I/O slowdowns.

FMUs will feed real time simulation environments and need to be as fast as possible.

NPSS FMU Capability implementation

NPSS FMU packaging script maps variables to 2 files. This is setup in a .config file as shown below:

Fields FMI name, NPSS name (optional), Data type, causality, variability , units, Description
These are the inputs
variable: time,,real, independent, continuous, sec, Simulation time
variable: SimMode,,real,input,continuous,none,Steady State = 1 Transient = 3
variable: DataRec,,real,input,continuous,none, 0=off 1=on
AtmoIn Input Bus
variable: AtmoIn%Amb.alt_in,,real,input,continuous,ft,Pressure Altitude
variable: AtmoIn%Amb.MN_in,,real,input,continuous,none,Mach Number
variable: AtmoIn%Amb.Ps_in,,real,input,continuous,psia,Ambient pressure input
variable: AtmoIn%Amb.Ts_in,,real,input,continuous,R,Ambient temperature
<pre>variable: AtmoIn%Amb.switchDay.intValue,,real,input,continuous,none,AS210 Day Type 0:Std 1:Trop -:</pre>
variable: EI.PLA in,,real,input,continuous,deg,Power 10=GI 15=FI 100=Mil 150=MaxAB
variable: WBI in,,real,input,continuous,lbm/sec,Mid Compressor Bleed input
variable: WBD in,,real,input,continuous,lbm/sec,Comp Discharge Bleed input
variable: HPX in,, real, input, continuous, hp, HP Extraction input
Basic Global outputs
variable: FG,,real,output,continuous,lbf,Gross Thrust
variable: TMDDreal.output.continuous.lbf.Net Propulsion Force

variable: WFT,, real, output, continuous, lbm/sec, Fuel Flow pound mass per sec variable: PLA_FDBK,, real, output, continuous, deg, PLA FeedBack variable: CbldECS.W,, real, output, continuous, lbm/sec, Bleed Flow Output variable: CbldECS.Pt,,real,output,continuous,lbf,Bleed Pressure variable: CbldECS.Tt,,real,output,continuous,R,Bleed Temperature variable: ShH.HPX,,real,output,continuous,hp,High Compressor Shaft Extraction

Variable naming can be adapted to meet requirements of both the FMI standard and NPSS

© 2023 Lockheed Martin Corporation, All Rights Reserved

arrays

fmiModelDescription

ModelDescription.XML

ScalarVariable name="time" valueReference="1" description="Simulation time" variability="continuous" causality="independent"> <Real unit="sec"/> </scalarVariable> <ScalarVariable name="SimMode" valueReference="2" description="Steady State = 1 Transient = 3" variability="continuous" causality="in</pre> <Real unit="none" start="0.0"/> :/ScalarVariable> <ScalarVariable name="DataRec" valueReference="3" description="0=off 1=on" variability="continuous" causality="input"> KReal unit="none" start="0.0"/> </ScalarVariable> <ScalarVariable name="AtmoIn.Amb alt in" valueReference="4" description="Pressure Altitude" variability="continuous" causality="input</pre> <Real unit="ft" start="0.0"/> </ScalarVariable> <ScalarVariable name="AtmoIn.Amb MN in" valueReference="5" description="Mach Number" variability="continuous" causality="input"> <Real unit="none" start="0.0"/> /ScalarVariable>

input": Using 4868 "index": [npss_fmi.json Datalist I/O to NPSS model Handles for Speed 8, 9, 10, Naming to the 11, NPSS model 12 **ARP 4868** thru parallel I/O **C**API "SimMode" "DataRec" "Amb.alt in' "Amb.MN in" "Amb.Ps in", "Amb.Ts in". "Amb.switchDay.intValue", "EI.PLA in", "WBI in" "WBD in" "HPX in"

LOCKHEED MARTI

Sim Host **Calling FMU**

Handles Naming to the

Calling Host per FMI standard

NPSS FMU Capability implementation

- Initialization and loading of the NPSS model needed to be scheduled and accommodated several ways due to the way various host programs set initial values and run at time 0.
- NPSS model needs to be loaded (c4868init) in initialization mode prior to setReal() being called.
- Prefer setting input start values at runtime, not using FMU variable StartValue input.
- FMU logging and ARP 4868 Debug dump switchable on/off in FMU config file. Provides debugging capabilities for the FMU execution, but slows down runtime.

FMU Execution process aligned to allow proper NPSS model execution and initialization.

NPSS FMU Capability implementation

- Variable naming and issues with NPSS and FMI were first issue
 - NPSS is object oriented names can have C++ style object scope: Amb.alt_in, EI.PLA_in, TrbH.S_map.effDes
 - NPSS objects Contain both Inputs / Output variables
- Various host programs treat the . Differently for FMU I/O variables
 - FMPy treats . Blocks as an array
 - Simulink treats as a Bus Object with the dot separating multi level bus signals
 - Bus feature is good however need to map Inputs to one bus and outputs to another so NPSS for example:
 - Amb.alt_in (Input) Amb.alt(Output) need to be in separate Bus blocks

A Common approach was developed to handle issue in a number of tools allowing the Simulink Bus object to be utilized for large I/O blocks

10000

Altitude

.5

Mach

Name	Start	Ur	nit	Plot	Description
✓					
Amb_MN_in	0).0 no	ne		Mach Number
Amb_Ps_in	0).0 psi	ia		Ambient pressure input
 Amb_switchDay_intValue 	C).0 no	ne		AS210 Day Type 0
Amb_Ts_in	0).0 R			Ambient temperature
Amb_alt_in	0).0 ft			Pressure Altitude
✓					
Amb_dTsStd		dR		\checkmark	Delta temperature fro
Amb_MN		no	ne	\checkmark	Mach Number
➡ Amb_Ps		psi	ia	\checkmark	Ambient pressure
➡ Amb_Pt		psi	ia	\checkmark	Total flight conditions
➡ Amb_q		lbf	/ft2	\checkmark	Dynamic pressure (vel
➡ Amb_Ts		R		\checkmark	Ambient temperature
➡ Amb_Tt		R		\checkmark	Total flight conditions
Amb_VCAS		kn	ot	\checkmark	Calibrated air speed
Amb_VEAS		kn	ot	\checkmark	Equivalent air speed
Amb_VTAS		kn	ot	\checkmark	True Air Speed
Amb_WAR		no	ne	\checkmark	water/air ratio
➡ Amb_alt		ft		\checkmark	Pressure altitude

Dassault OSS Python FMPy tool

NPSS FMU Creation Demo

© 2023 Lockheed Martin Corporation, All Rights Reserved

LOCKHEED MARTIN

NPSS FMU Execution Demo

📣 MATLAB R2022b				- 🗆 X	
HOME PLOTS APPS			🔚 🔏 🛱 🛱 🗇 🔄 🚍 🕐 💿 Search Documen	tation 👂 🐥 Keith 🕶	
New New New Open Compare Import Costing Live Script I Script FILE	Data 💆 Clear Workspace 👻 👻 🍪 Clear Cor VARIABLE CODE	ime Simulink Layout 🖓 Set Path Add-Ons He	Ip 🚰 Request Support	Ā	Open Select
🗢 🔶 🔁 🔀 📙 🕨 N: 🕨 FMI 🕨 Project_XVESA 🕨 mode	- untitled - Smullink		-		
Current Folder	Command V	MODELING FORMAT APPS		- 0 - 0	~
	$f_{\xi} >>$	Signals Viewer PREPARE	Step Run Step Stop Data Inspector SIMULATE	Property Inspector	Name Date modi □ CDM01_TF02_Installed_v3r1_TR_6DOF.fmu 2/20/2023 ⑤ NPSStoFMU.bat 2/8/2023 8 ✔□ TF02_Installed_v1.3_TR_6DOF.config 2/17/2023
CDM01_TF02_Installed_v3r1_TR_6DOF.fmu (FMU File) No details available	V Ready	100%	Va	riableStepAuto	

NPSS FMU in Simulink Benefits and Features

- Integration time of NPSS model greatly reduced
- MathWorks provided preview of Simulink feature that auto codes the interface to the FMU using the Embedded Coder. Was able to autogenerate the interface code about the TF02 FMU.
- FMU tracks other information about the variables,
 - Units attribute can be set, but some differences in the string syntax as shown to the right.
 - FMI / NPSS / Simulink have some minor differences in unit string definitions, but can be handled in the Model description.XML interface.
 - Description also a useful attribute that can transfer over from the NPSS model.

tem	Units	Unit Strings	Unit Type			
	foot	ft	U.S. Customary	ft	ft	ft
Altitude	meter	m	Preferred SI	m	m	m
Angle	degree	deg	U.S. Customary	deg	deg	deg
	revolution	rev	U.S. Customary	rev	uce	rev
	radian	rad	Preferred SI	rad		rad
		Hz				
requency	Hertz	(kHz, MHz, GHz)		Hz		Hz
Force	pound force	lbf	U.S. Customary	lbf		lbf
		kN				
	kilonewton	(N)	Preferred SI	N		kN
	foot	ft	U.S. Customary	ft		ft
	inch	in	U.S. Customary	in		in
	mile	mi	U.S. Customary	mi		mi
ength	nautical mile	nmi	U.S. Customary	M		M
		m				
	meter	(mm, cm, m, km)	Preferred SI	m	m	m
Mass	pound mass	lbm	U.S. Customary	Ibm		Ibm
	slug	slug	U.S. Customary			
		kg				
	kilogram	(mg, g, kg)	Preferred SI	kg	kg	kg
Pressure	pound force per square inch	psi or lbf/in^2	U.S. Customary	psi,psia,psig		psi,psia,psi
	kilopascal	kPa (Pa, MPa)	Preferred SI	kPa		kPa
Power	horsepower	hp	U.S. Customary	hp		hp
	kilowatt	kW (W)	Preferred SI	kW W		kW
Rotational speed	revolution per minute	rpm or rev/min	U.S. Customary	rpm		rpm
	radian per second	rad/sec	Preferred SI	rad/s		rad/sec
Temperature	degree Rankine	degR	U.S. Customary	degR		R
	degree Fahrenheit	degF	U.S. Customary	degF		F
	Kelvin	к	SI and Imperial	к	к	К
	degree Celsius	degC	Preferred SI	deqC		C
Time	millisecond	msec		ms		
	second	sec		s	s	sec
	minute	min		min	-	
	hour	hr		h		
Velocity	foot per second	ft/sec	U.S. Customary	ft/s		ft/sec
	nautical mile per hour	knot or nmi/hr	U.S. Customary	kn		knot
	meter per second	m/sec	Preferred SI	m/s		
	British thermal unit	BTU	U.S. Customary	Btu		Btu
Work		kJ				
Work	kilojoule	(J)	Preferred SI	kJ J		Kj

Closing remarks

- FMI seems to be making a big impact in the simulation interoperability world. Numerical simulations like NPSS are easily packaged into FMUs and provide interoperability with a number of Toolsets.
- Need to evaluate FMI 3 standard and its impacts on all interfaces.
- Desire for variable timestep capability supposed supported in FMI 3.
- FMU packaged model provides an easier package to configuration manage, deploy and track with PLM tools.
- FMUs also easy to execute thru python scripts allowing automated regression testing and PLM requirements testing.
- For non Consortium members Contact the <u>NPSS</u> Consortium for further information.

