Reduced Order Modeling (ROM) with Al: Accelerating Simulink Analysis and Design

Kishen Mahadevan, MathWorks

(He/His)

Terri Xiao, MathWorks

(She/Her)

Ready

Key takeaways

Common Challenges

High fidelity models, such as ones from 3rd party FEA tools, are too slow for system level simulation and HIL testing.

Creating a ROM that produces desired results in terms of speed, accuracy, interpretability, etc.

10%

Reduced Order Modeling

What

- Techniques to reduce the computational complexity of a computer model
- Provide reduced, but acceptable fidelity

Why

- Enable simulation of FEA models in Simulink
- Perform hardware-in-the-loop testing
- Develop virtual sensors, Digital twins
- Perform control design
- Enable desktop simulations for orders-ofmagnitude longer timescales

Reduced-Order Model (ROM)

High-fidelity model

ROM

Reduced Order Modeling techniques

Example overview

Replacing a first-principles engine model with an AI-based Reduced Order Model

Generate synthetic data for training

Data Preparation

Al Modeli

Simulation & T

Deployment

Perform Design of Experiments (DoE) and generate synthetic data from Simulink model

AI techniques that are suited for modeling dynamic systems

Create deep-learning based nonlinear state-space models without having to be a deep learning expert

Neural state-space model

🗅 📸 🤝 🚍 🔁 🕐 🔘 Search Documentation

🔎 🤔 🛛 Kishen 👻

- 0

1919

⊛⊞×

HOME	PLOTS	APPS	LIVE EDITOR		
💠 🗼 💽 🜄 📁 🕨 C: 🕨 Nonlinear System Identification 🕨 NonlinearSystemIdentification					

🔳 Live Editor - C:\Nonlinear System Identification\NonlinearSystemIdentification\Webinar_Neural_state_space_demo1.mlx

Webinar_Neural_state_space_demo1.mlx 💥 🕂

Training Neural State Space Models

This example shows how to train and evaluate Neural State Space to model the behaviour of a vehicle engine.

Table of Contents

1. Data preparation

1.1. Prepare training and validation data

1.2. Visually explore the data

2. Design and Train Neural State Space Model

3. Validate the Model

Project path

Ln 64

Capture time dependencies in time-series data using LSTM

Include insights and knowledge of physics of your system using Nonlinear ARX Models

Extend linear models and model nonlinear behavior using flexible nonlinear functions

Design and run experiments to train and compare your AI models with Experiment Manager

Manage AI tradeoffs for your system

Results are specific to Vehicle Engine ROM example

System-level simulation

Data Preparation

Al Modelii

Simulation & Test

Deployment

Integration of trained AI model into Simulink

System-level simulation

Hardware-in-the-loop simulation

Data Preparation

Al Modeling

Simulation 8

Deployment

Hardware-in-the-loop simulation

19

Use ROMs outside of Simulink, for development and operation stages

Renault Uses Deep Learning Networks to Estimate NO_X Emissions

Challenge

Design, simulate, and improve aftertreatment systems to reduce oxides of nitrogen (NO_X) emissions

Solution

Use MATLAB and Deep Learning Toolbox to model engine-out NO_X emissions using a long short-term memory (LSTM) network

Results

- NO_X emissions predicted with close to 90% accuracy
- LSTM network incorporated into after treatment simulation model
- Code generated directly from network for ECU deployment

Measured NO_x emissions from an actual engine and modeled NO_x emissions from the LSTM network.

"Even though we are not specialists in deep learning, using MATLAB and Deep Learning Toolbox we were able to create and train a network that predicts NO_X emissions with almost 90% accuracy."

- Nicoleta-Alexandra Stroe, Renault

Link to article

Key takeaways

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

