MATLAB EXPO

Optimizing the Design and Operation of Radar and Antenna Systems in MATLAB

Sumit Garg, MathWorks

Chris Lee, MathWorks

MathWorks 🤣 @MathWorks

Share the EXPO experience **#MATLABEXPO**

linkedin.com/in/ sumit-garg-689bb916

linkedin.com/in/ chrisstlee

Apply design optimization to key radar and antenna design challenges

Radar resource management

Array pattern synthesis

Antenna design

Multifunction Phased Array Radar (MPAR)

Capabilities Electronically steered phased array enables an *agile* beam and dynamic time/energy resource allocation Control parameters can be *varied* nearly *instantaneously*Many tasks supporting different functions can be multiplexed in time and angle Emission reduction

Higher frequency operation increases the interference challenges

Aviation Today

FAA Issues New Radar Altimeter 5G C-Band Risk Assessment ...

As the FAA indicated in its Dec. 7 AD, while it has heard concerns from airlines, the FAA, and aircraft OEMs over the potential interference...

Ø Reuters

FAA wants U.S. airlines to retrofit, replace radio altimeters

... a push to retrofit and ultimately replace some airplane radio altimeters that could face interference from C-Band 5G wireless service.

Operational and physical resources are limited

Address the design challenges with optimization workflows

MATLAB EXPO

Apply design optimization to key radar and antenna design challenges

Radar resource management

Array pattern synthesis

Antenna design

Link to example

Successful completion of a search task depends on power aperture product (PAP)

Circular Planar Array

Resource allocation under normal operational conditions

Optimize search quality across all sectors with QoS

Find optimal resource allocation under constrained operating conditions

Apply design optimization to key radar and antenna design challenges

Radar resource management

Array pattern synthesis

Antenna design

ı			- A - A		1 C 1 C 1	
L	Sensor	Arrav	Anal	vzer -	untitled	1
2	DCHOOL	7 tirtay	7 1101	y 2 C I	GITCICC	28

Sensor Array Analyzer - untitled									
ANALYZER STEERING								日本市市の	e 🔁 🕐 🖲
New Save Import	URA ATTRAY	tion Partition Gaussian	Isotropic	3D 2D Gra Pattern Pattern ▼ E	ting Lobe Default Layout	Export			-
Parameters	AKKAY	Array Geometry		PLOTS	LAYOUT	EXPORT	Array Characteristics		-
Falameters		Anay Geometry					Anay characteristics	@ 200 MHz	
Array Geometry - Uniform Linear —							Array Directivity	6 02 dBi at 0 Az: 0 FI	
Number of Elements	4			Array Geometry			Array Span	x=0 m y=1.5 m z=0 m	
Element Spacing	0.5 m ~						Number of Elements	4	
							HPBW	26.30° Az / 360.00° El	
Array Axis	у 🗸						FNBW	60.00° Az / -° El	
Tapar	None						SLL	11.30 dB Az / - dB El	
Taper	None						Element Polarization	None	
Propagation Speed (m/s) Signal Frequencies (Hz) Back Baffled Appl	3e8	3	ڋ ×	•					

How can I obtain a pattern that meets my requirements?

- Traditional process very tedious
- Trial and error with array geometry, parameters, spacing, weighting, etc.

You can perform array synthesis using optimization to drive pattern attributes

Example: Minimum Variance Beamforming

Signal of interest at 0° azimuth Interference at -70°, -40°, and -20° degrees azimuth

Sidelobes < -40 dB between -30 and -10 degrees Sidelobes < -20 dB everywhere outside mainlobe

Example: Minimum Variance Beamforming

Tapered sidelobe mask decreasing linearly from -18 dB to -55 dB Nulls at -45, -35, 40, and 60 degrees azimuth **Sweep beam from -35 to 35 degrees**

MATLAB EXPO

Apply design optimization to key radar and antenna design challenges

Radar resource management

Array pattern synthesis

Antenna design

Finished adding.

📣 Antenna Designer - Results										- 🗆 X
OPTIMIZER									2.6.4	a 🏦 🗟 e' 🖨 😧 🤅
Min Bandw idth Area	Frequency Range Center Frequency Main Lobe (AZ, EL)	200:200:2600 MHz 400 MHz , 90 deg	Optimizer Iterations	SADEA SADEA Parallel Computing	Run Stop	Accept Cancel				
OBJECTIVE FUNCTION	INPUT	i Perulta	Chang	SETTINGS	RUN	CLOSE				
Design variables		Results	Snow							
Tractalisland - Geometry Current Value	Lower Bound Upper Bo	nd	0.01			Populati	on Diversity			
0.055517			0.000							
└ Length (m) 0.055517	0.01 0.05	_	0.008 -							
✓ Width (m) 0.0011	0.01 0.05		0.006							
StripLineWidth (m)	0.001		0.004							
SlotLength (m) 0.0055	0.001 0.005		0.002							
	0.005		0							
Height (m) 0.12214	0.05	- 11	Ő	50	100	150	200	250	300	350
GroundPlaneLength (m) 0.12214	0.05 0.1					Conver	ence Trend			
Groundplanetwidth (m)	0.05	- 11	650		1					
Tit (deg) [0]			600							
Tittaxis [1.0			550		_					
			500							
FractalIsland - Substrate			500							
Fractalisiand - Conductor			450 -						S	
Fractalisiand - Load			400	50	100	150	200	250	300	350
Арру			0	00	100	100	200	200	000	000
Constraints										
% Weight Constraint Function Sign	Value Add Re	Objective -					Design Vector			
50 Gain (dbi) > >	10	- Objective	Function:	NA						
50 S11 (dB) ~ < ~	-10 +	- Current le	eration:	NA						
Apply										

Changes applied successfully.

MATLAB EXPO

Define Customized Optimization Workflows in MATLAB

- Define the objective and constraint function using MATLAB functions
- Use global or local optimization methods applied to antenna design
- Use parallel computing to speed up computation

% Optimizer options

optimizerparams = optimoptions(@patternsearch); optimizerparams.UseCompletePoll = true; optimizerparams.PlotFcns = @psplotbestf; optimizerparams.UseParallel = true; optimizerparams.Cache = 'on'; optimizerparams.MaxIter = 100; optimizerparams.FunctionTolerance = 1e-2;

% Antenna design parameters designparams.Antenna = yagidesign;

designparams.Bounds = parameterBounds;

% Analysis parameters

analysisparams.CenterFrequency = fc; analysisparams.Bandwidth = BW; analysisparams.ReferenceImpedance = Z0; analysisparams.MainLobeDirection = ang(:,1); analysisparams.BackLobeDirection = ang(:,2);

% Set constraints

constraints.S11min = -10; constraints.Gmin = 10.5; constraints.Gdeviation = 0.1; constraints.FBmin = 15; constraints.Penalty = 50; optimdesign = optimizeAntennaDirect(designparams,analysisparams,constraints,optimizerparams);

Summary and Resources

Apply design optimization to key radar and antenna design challenges

Learn more about designing and optimizing radar and antenna systems in MATLAB

Videos

Training

Optimization Techniques in MATLAB

Examples

MATLAB EXPO

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

