MATLAB EXPO

A Cloud-based MATLAB Visual Inspection System

Dr. Brett Shoelson, MathWorks

(He/Him)

Arvind Hosagrahara, MathWorks

(He/Him)

What is Automated Visual Inspection?

Automated visual inspection is the evaluation of images or video, typically to detect failures and quality defects—often in manufacturing processes.

Automated Defect Detection Machine Vision Optical Inspection Automated Inspection

MATLAB AI in a Cloud-based Visual Inspection System

Requirements: A visual inspection system should:

- Be secure
- Run at-scale
- Be re-purposable for different applications

MATLAB's AI solution was operationalized on the cloud using:

- Microservices built to modern standards and best practices for scalability / security
- DevOps processes for agility in development and deployment of AI and vision algorithms

Sample Problem: Detecting and characterizing defects on a Raspberry Pi

Potential defects include:

- Misaligned components
- Bad assembly
- Damage
- Missing Solder
- Labeling mistakes
- Other?

Demonstration

The defects in these boards were artificially introduced for demonstration purposes

System Architecture and Overview Access from any Mobile End Users Device with any standardscompliant browser Video / Stream **Images** DevOps for Cloud Infrastructure **Web Application MATLAB Production Server Kubernetes / Container Orchestration** DevOps for MATLAB Vision / AI **Developers IT Administrators Storage / Compute Infrastructure**

Image Processing Toolbox Computer Vision Toolbox Deep Learning Toolbox Statistics and Machine Learning Toolbox

• • •

Documentation	Examples	Functions	Blocks	Apps	

Automated Visual Inspection — Functions

Load Training Data

groundTruth	Ground truth label data
sceneLabelTrainingData	Create training data for scene classification from ground truth
splitAnomalyData	Split data into training, validation and testing sets for anomaly detection

Train Anomaly Detector

trainFCDDAnomalyDetector	Train fully convolutional data description (FCDD) anomaly detection network	
rainFastFlowAnomalyDetector	Train FastFlow anomaly detection network	
rainPatchCoreAnomalyDetector	Train PatchCore anomaly detection network	
anomalyThreshold	Optimal anomaly threshold for set of anomaly scores and corresponding labels	

Detect Anomalies Using Deep Learning

fcddAnomalyDetector	Detect anomalies using fully convolutional data description (FCDD) network for anomaly detection
fastFlowAnomalyDetector	Detect anomalies using FastFlow network
patchCoreAnomalyDetector	Detect anomalies using PatchCore network
classify	Classify image as normal or anomalous
predict	Predict unnormalized anomaly scores

Visualize and Evaluate Results

anomalyMap	Predict per-pixel anomaly score map	
anomalyMapOverlay	Overlay heatmap on image using per-pixel anomaly scores	
viewAnomalyDetectionResults	View anomaly detection results	
evaluateAnomalyDetection	Evaluate anomaly detection results against ground truth	
anomalyDetectionMetrics	Anomaly detection metrics	

Sample Problem: Detecting Defects on a Raspberry Pi

Template-based orientation and preprocessing...

Sample Problem: Detecting Defects on a Raspberry Pi

Component detection...

The defects in these boards were artificially introduced for demonstration purposes

Sample Problem: Detecting Defects on a Raspberry Pi

QR-Code Triggering

- Live, Constrained Capture (iPhone, iPad)
- Automatic updating of ground truth and model
- Scalable, Cloud-Based Analysis and Reporting

The defects in these boards were artificially introduced for demonstration purposes

Cloud based storage, compute and network infrastructure

DevOps

for MATLAB Vision / Al

Developers

IT Administrators

MATLAB from Prototype to Production

Modern DevOps based automated continuous deployment of MATLAB applications

MATLAB Deployment and Scaling

Take-aways and Conclusion

- MathWorks products along with published reference architectures can be leveraged to build production-grade visual inspection systems for the cloud
- Secure, scalable and agile solutions for Al/Visual Inspection can be built to IT DevOps best practices
- Domain specific toolboxes and support packages are available for MATLAB users to go from prototype to production quickly

Q & A

MATLAB EXPO

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.