6G Wireless Technology -Accelerate your R&D with MATLAB

Dr. Houman Zarrinkoub, MathWorks

Dr. Ahmad Saad, MathWorks

Agenda

- 6G Goals, requirements and evolution
- 6G enabling technologies
- Accelerate your 6G exploration and design with MATLAB®

Agenda

- 6G Goals, requirements and evolution
- 6G Enabling Technologies
- Accelerate your 6G exploration and design with MATLAB®

Ubiquitous Connectivity with wireless ecosystem

6G: Next generation of wireless systems

	2G	3G	4G	5G	6G
Time period	1990s	2000-2008	2008-2018	2018-Now	
Technology	NA: D-AMPS EMEA: GSM, Edge, GPRS	NA: CDMA-2000 EMEA: UMTS, HSPA+	LTE, LTE-Advanced	5G, 5G-Advanced	?
Maximum data rates	9.6-437 kbits/s	1.92-84 Mbps	300 Mbps – 1 Gbps	20 Gbps	

6G R&D: Setting goals and requirements

- Global collaboration is ongoing
- Goals?
- More inclusive, immersive, and sustainable wireless connectivity
 - Superior performance to 5G
 - Flexibility and expanded use cases
 - Scale
 - Bridge the digital divide
- Requirements?
 - Max. data rate ~ 100 Gbps ?
 - Min. latency ~ 0.1 msec ?
 - Max. positioning accuracy ~ 1 mm ?

6G projected timeline and evolution

ITU – International Telecommunications UnionIMT-2030 International Mobile Telecommunications3GPP Third Generation Partnership Project

New applications enabled by 6G systems

- Virtual and Augmented Reality (VR/AR)
- Artificial intelligence (AI)
- Connected Cars, Industries and Automation
- Ubiquitous wireless coverage
- Joint communications and sensing,
- Low-power wireless communications.

Agenda

- 6G Goals, requirements and evolution
- 6G enabling technologies
- Accelerate your 6G exploration and design with MATLAB®

6G Enabling Technologies

Non-Terrestrial Networks (NTN)

Artificial Intelligence (AI)

Reconfigurable Intelligent Surfaces (RIS)

New Waveforms for 6G

Non-Terrestrial Networks (NTN)

NTN- How MATLAB can help

Satellite and Multi-domain Scenario Modeling and Visualization

Multi-domain scenarios (aircraft-to-satellite communication)

Scenarios and constellation visualization

Access analysis between constellations and ground stations

Link Analysis between Satellites, Constellations and Ground Stations

Latency and doppler A analysis

Multi-hop communication links

Interference analysis

Design Antennas to Realize Beamwidth Requirements

Design antenna elements Design antenna arrays

Beamforming

Reconfigurable Intelligent Surfaces (RIS)

RIS- How MATLAB can Help

Artificial Intelligence (AI)

 Success of AI in other application areas (image processing, NLP)

Hardware and computation power advancements Improve performance using datadriven vs model-based approaches

Reduce algorithm complexity

Facilitate joint optimization of network and device operations

AI for 6G – How MATLAB can Help

THz/Sub THz

MOTIVATIONS FOR THZ IN 6G

Unprecedented increase in data traffic requirements

 Scarcity in existing sub 6 GHz Spectrum

Support extremely high bandwidths up to hundreds of Gbps

Enable ultra-precise localization

THz/Sub THz - How MATLAB can Help

Model Massive MIMO and Hybrid Beamforming to Counter High THz Attenuation

Accurate Models for Environmental Losses at High Frequencies using Raytracing

Model terrain and atmospheric losses due to gas, rain, fog

Model losses due to reflection, refraction and diffraction

<text><text><text><text>

New Waveforms for 6G

MOTIVATION FOR NEW WAVEFORMS

- Newly introduced frequency bands need new waveforms
- Resilient waveforms needed to compensate HW limitations

Improve spectrum and power efficiency

Improve coverage and support high throughput

Enable new use cases: positioning, sensing, PHY security

Waveform Design for 6G - How MATLAB can Help

Customize and Build on Existing 5G Waveforms to Explore New Waveforms for 6G

Agenda

- 6G Goals, requirements and evolution
- 6G enabling technologies
- Accelerate your 6G exploration and design with MATLAB®

AI for Digital Pre-Distortion with training and deployment

Workflow

- Collect data from a real PA using test instrument hardware or characterize the PA and use the model for simulation
- Train a neural network using real PA data or simulation data
- Test the network with real data using the hardware
- Once satisfied, prune and quantize the network
- Target an FPGA and deploy the algorithm with HDL

Presence detection using Wireless sensing

Use Wi-Fi channel state information to detect the presence of people in a room

- Capture Wi-Fi beacon CSI with SDR and WLAN Toolbox with and without movement to create a data set or use downloaded 3P data set
- Train a neural network to classify presence

Electromagnetic Analysis of Intelligent Reflecting Surface

R2023a

Model the response of an IRS using fullwave electromagnetic simulation.

- Create and Visualize the Infinite IRS
- Assign Direction and Polarization
- Visualize Reflection Characteristics

MATLAB for faster 6G design exploration and research

Algorithms in open editable, customizable MATLAB functions

% Encode the DL-SCH transport blocks codedTrBlock = encodeDLSCH(pdsch.Modulation,pdsch.NLayers,... pdschIndicesInfo.G,harqProcesses(harqProcIdx).RV,harqProcIdx-1);

% PDSCH modulation and precoding pdschSymbols = nrPDSCH(codedTrBlock,pdsch.Modulation,pdsch.NLayers,gnb pdschSymbols = pdschSymbols*wtx;

Jointly optimize Digital, RF and Antenna of 6G systems

How to Learn More

Wireless communications solution page

mathworks.com/solutions/wirelesscommunications.html

Wireless Communications product pages

mathworks.com/products/ 5G, WLAN, Satellite-communications

Wireless Communications Workshops

Satellite Communications (NTN) AI for Wireless 5G Training Course

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

